K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2019

Tìm min :

Ta có : \(x^2+y^2-xy=4\)

\(\Leftrightarrow x^2+y^2=4+xy\le4+\frac{x^2+y^2}{2}\) ( vì \(\left(x-y\right)^2\ge0\) )
\(\Leftrightarrow\frac{A}{2}\le4\)

\(\Leftrightarrow A\le8\)

30 tháng 12 2019

Tìm max

\(x^2+y^2-xy=4\)

\(\Leftrightarrow x^2+y^2=4+xy\)

\(\Leftrightarrow3\left(x^2+y^2\right)=8+\left(x+y\right)^2\ge8\)

\(\Leftrightarrow A\ge\frac{8}{3}\)

8 tháng 4 2019

Áp dụng bđt Cauchy cho 2 số không âm :

\(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y=2xy\cdot x=x\)( vì \(xy=1\))

\(\Rightarrow\frac{x}{x^4+y^2}\le\frac{x}{x}=1\)

Hoan toàn tương tự : \(\frac{y}{x^2+y^4}\le\frac{y}{y}=1\)

Khi đó :

\(\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\le1+1=2\)

Hay \(A\le2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^4=y^2\\x^2=y^4\\xy=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}}\)

8 tháng 4 2019

Thêm đk x,y>0

*Tìm giá trị lớn nhất:

\(A=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\le\frac{x}{2xy.x}+\frac{y}{2xy.y}=\frac{x}{2x}+\frac{y}{2y}=\frac{1}{2}+\frac{1}{2}=1\)

Dấu "=' xảy ra khi x = y = 1

P/s: Bài này hình như không có Min thì phải.:>