Tìm số hữu tỉ x khi
( 2x - 1 ) mũ 3 = 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-1\right)^3=\dfrac{8}{125}\)
\(\left(2x-1\right)^3=\pm\left(\dfrac{2}{5}\right)^3\)
\(\text{Vậy }2x-1=\dfrac{2}{5}\)
\(2x\) \(=\dfrac{2}{5}+1=\dfrac{7}{5}\)
\(x\) \(=\dfrac{7}{5}.\dfrac{1}{2}=\dfrac{7}{10}\)
\(\text{hoặc }2x-1=\dfrac{-2}{5}\)
\(2x\) \(=\left(\dfrac{-2}{5}\right)+1=\dfrac{3}{5}\)
\(x\) \(=\dfrac{3}{5}.\dfrac{1}{2}=\dfrac{3}{10}\)
\(\Rightarrow x\in\left\{\dfrac{7}{10};\dfrac{3}{10}\right\}\)
1,x2+5
ta đặt x2+5=k2=>5=k2-x2=(k+x)(k-x)
ta thấy (k+x)-(k-x)=2x là số chẵn nên k+x va k-x phải cùng chẵn hoặc cùng lẻ
=>TH1:k+x=5,k-x=1
=>k=3,x=2
=>TH2:k+x=-1,k-x=-5
=>k=-3 x=2
như vậy ở 2 TH ta chỉ tìm được x=2
vậy x=2 thì thỏa mãn
2, không rõ đề
Con " Nguyễn Huyền Trang " đéo biết thì trả lời làm cái l*n gì
c) và d) của Trí sai nên sửa lại
c) (2x - 4)/7 < 0
⇒ 2x - 4 < 0 (vì 7 > 0)
⇒ 2x < 4
⇒ x < 2
d) (5x - 8)/-10 < 0
⇒ 5x - 8 > 0 (vì -10 < 0)
⇒ 5x > 8
⇒ x > 8/5
a) \(\dfrac{x-2}{45}>0\Rightarrow x-2>0\Rightarrow x>2\)
b) \(\dfrac{x+3}{-2}>0\Rightarrow x+3< 0\Rightarrow x< -3\)
c) \(\dfrac{2x-4}{7}< 0\Rightarrow2x-4>0\Rightarrow2x>4\Rightarrow x>2\)
d) \(\dfrac{5x-8}{10}< 0\Rightarrow5x-8< 0\Rightarrow5x< 8\Rightarrow x< \dfrac{8}{5}\)
Ta có:
\(VT=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+n^2+2n+1+n^2}{n^2\left(n+1\right)}\left(1\right)\)
\(VP=\frac{\left(n^2+n+1\right)}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left[n\left(n+1\right)\right]}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left(n^2+1\right)}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2n^2+2n}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+2n+1+2n^2}{n^2\left(n+1\right)^2}\left(2\right)\)
Từ (1) và (2)
=>đpcm
Vì \(\sqrt{x}\)là một số hữu tỉ
\(\Rightarrow\sqrt{x}\)có dạng \(\frac{a}{b}\)(\(\frac{a}{b}\)là một phân số tối giản)
Vì \(\sqrt{x}\ge0\)và theo đề bài \(\frac{a}{b}\ne0\Rightarrow\frac{a}{b}\ge0\)
\(\Rightarrow a,b\)là những số nguyên dương (1)
Vì \(\sqrt{x}\)có dạng \(\frac{a}{b}\Rightarrow\left(\sqrt{x}\right)^2=\left(\frac{a}{b}\right)^2\Rightarrow x=\frac{a^2}{b^2}\)(2)
Vì \(\frac{a}{b}\)là phân số tối giản
\(\Rightarrow a,b\)là hai số nguyên tố cùng nhau
\(\Rightarrow\)ƯCLN(a,b)=1
Vì \(a^2\) có Ư(a), \(b^2\)có Ư(b)
\(\Rightarrow a^2,b^2\) là hai số nguyên tố cùng nhau
\(\Rightarrow\)ƯCLN(\(a^2,b^2\))=1
\(\Rightarrow\frac{a^2}{b^2}\) là phân số tối giản (3)
Từ (1), (2) và (3)
=>đpcm
Câu 1.
$\frac{1}{15}-\frac{9}{15}=\frac{-8}{15}$
$\frac{2}{15}-\frac{10}{15}=\frac{-8}{15}$
$\frac{3}{15}-\frac{11}{15}=\frac{-8}{15}$
Câu 2:
$\frac{-9}{15}+\frac{1}{15}=\frac{-8}{15}$
$\frac{-10}{15}+\frac{2}{15}=\frac{-8}{15}$
$\frac{-11}{15}+\frac{3}{15}=\frac{-8}{15}$
giống cái kia thôi bn
Mik làm rồi mà
Mà cái bn Nguyễn Duy Đạt gì đó làm thiếu 1 trường hợp
Mà bn vẫn kik hở
Sao zzzzz??????
(2x-1)^3=8
(2x-1)^3=2^3
=>2x -1=2
2x=2+1
2x=3
x=3:2
x=3/2
Vậy x=3/2
Ta có:
\(\left(2x-1\right)^3=8\)
\(\Leftrightarrow2^3=8\)
\(\Leftrightarrow2x-1=2\)
\(\Leftrightarrow2x=2+1=3\)
\(\Leftrightarrow x=3:2\)
\(\Leftrightarrow x=1,5=\frac{3}{2}\)