K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

Gọi 4 góc của tứ giác ABCD lần lượt là : a;b;c;d

Có \(a=\frac{b}{2}=\frac{c}{3}=\frac{d}{4}\)

Ta đã biết tổng 4 góc của tứ giác là : 360 độ 

\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{d}{4}=\frac{a+b+c+d}{1+2+3+4}=\frac{360}{10}=36\)

\(\Rightarrow a=36.1=36^o\)

\(b=36.2=72^o\)

\(c=36.3=108^o\)

\(d=36.4=144^o\)

27 tháng 6 2016

Gọi các góc của tứ giác lần lượt là: x;y;z;t.

Ta có: x + y + z + t = 360 độ

Mà các góc tỷ lệ với 1;2;4;5 ta có:

\(\frac{x}{1}=\frac{y}{2}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{1+2+4+5}=\frac{360}{12}=30\)

  • x = 1*30 = 30
  • y = 2*30 = 60
  • z = 4*30 = 120
  • t = 5*30 = 150

Vậy các góc của tứ giác là: 30; 60; 120; 150 độ.

19 tháng 8 2016

Vì 4 góc của tứ giác ABCD biết bốn góc tỉ lệ với 1,2,3,4

    Suy ra:\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{D}{4}\)

        Mà A+B+C+D=3600(theo định lý)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

  \(\Rightarrow\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{D}{4}=\frac{A+B+C+D}{1+2+3+4}=\frac{360^0}{10}=36^0\)

\(\Rightarrow\begin{cases}\frac{A}{1}=36^0\\\frac{B}{2}=36^0\\\frac{C}{3}=36^0\\\frac{D}{4}=36^0\end{cases}\)\(\Rightarrow\begin{cases}A=36^0\\B=72^0\\C=108^0\\D=144^0\end{cases}\)

              Vậy A=360;B=720;C=1080;D=1440

19 tháng 8 2016

Có: \(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{D}{4}\) và A + B + C + D = 360 độ

\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{D}{4}=\frac{A+B+C+D}{1+2+3+4}=\frac{360^o}{10}=36\)

\(\frac{A}{1}=36\Rightarrow A=36\)

\(\frac{B}{2}=36\Rightarrow B=72\)

\(\frac{C}{3}=36\Rightarrow C=108\)

\(\frac{D}{4}=36\Rightarrow D=144\)

Vậy: \(\widehat{A}=36^o,\widehat{B}=72^o,\widehat{C}=108^o,\widehat{D}=144^o\)

2 tháng 9 2020

1. Xét tứ giác ABCD ta có :

^A + ^B + ^C + ^D = 3600 ( định lí )

mà 4 góc đó bằng nhau 

=> ^A = ^B = ^C = ^D = 3600/4 = 900

2. Xét tứ giác ABCD ta có :

^A + ^B + ^C + ^D = 3600 ( định lí ) (1)

mà ^A , ^B , ^C , ^D lần lượt tỉ lệ với 1 ; 2 ; 4 ; 5

=> \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}\)(2)

Từ (1) và (2) => Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}=\frac{\widehat{A}+​​\widehat{B}+\widehat{C}+\widehat{D}}{1+2+4+5}=\frac{360^0}{12}=30^0\)

=> ^A = 300

     ^B = 300.2 = 600

     ^C = 300.4 = 1200

     ^D = 300.5 = 1500

2 tháng 9 2020

Xét tứ giác ABCD có các góc bằng nhau

=> \(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}\)

Mà \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\left(dl\right)\)

\(\Leftrightarrow4\widehat{A}=360^o\Leftrightarrow\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=90^o\)

Bài 2: 

Xét tứ giác ABCD 

=> \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

Vì các góc tứ giác ABCD lần lượt tỉ lệ với 1:2:4:5

\(\Rightarrow\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}\)VÀ \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

Theo tính chất dãy tỉ số bằng nhau

\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+4+5}=\frac{360^o}{12}=30^o\)

Do đó 

\(\frac{\widehat{A}}{1}=30^o\Leftrightarrow\widehat{A}=30^o\)

\(\frac{\widehat{B}}{2}=30^o\Leftrightarrow\widehat{B}=60^o\)

\(\frac{\widehat{C}}{4}=30^o\Leftrightarrow\widehat{C}=120^o\)

\(\frac{\widehat{C}}{5}=30^o\Leftrightarrow\widehat{C}=150^o\)

Vậy.........

a) Xét tứ giác ABCD có 

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)(Định lí tổng bốn góc trong một tứ giác)

mà \(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}\)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\dfrac{360^0}{10}=36^0\)

Do đó: \(\widehat{A}=36^0;\widehat{B}=72^0;\widehat{C}=108^0;\widehat{D}=144^0\)

Ta có: \(\widehat{B}+\widehat{C}=180^0\)

mà hai góc này là hai góc trong cùng phía

nên AB//CD(dấu hiệu nhận biết hai đường thẳng song song)

hay ABCD là hình thang

8 tháng 11 2021

Áp dụng tc dtsbn:

\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{6}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{D}}{5}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{3+6+4+5}=\dfrac{360^0}{18}=20^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=60^0\\\widehat{B}=120^0\\\widehat{C}=80^0\\\widehat{D}=100^0\end{matrix}\right.\)

8 tháng 11 2021

cảm ơn bạn

 

1 tháng 11 2021

Áp dụng tcdtsbn:

\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\dfrac{360^0}{10}=36^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=72^0\\\widehat{C}=108^0\\\widehat{D}=144^0\end{matrix}\right.\)

1 tháng 11 2021

Áp dụng gì thế bạn ơi ;-;

15 tháng 6 2018

ta có A;B;C;D tỉ lệ với 6;5;3;4

suy ra: A/6=B/5=C/3=D/4

Áp dụng dãy tỉ số bằng nhau :

A/6=B/5=C/3=D/4=A+B+C+D/6+5+3+4=360/18=20

suy ra A=20*6=120*

          B=20*5=100*

           C=20*3=60*

          D=20*4=80*

vậy A=120*;B=100*;C=60*;D=80*