Bài 2:
a) CMR: Nếu (a2 + b2) (x2 + y2) = (ax + by)2 thì \(\frac{a}{x}=\frac{b}{y}\)
b) Cho x,y,z thuộc Q và x2 + y2 + z2 = 2 (xy + yz + zx)
CMR: 1) xy + yz + zx là bình phương của một số hữu tỉ
2) xy là bình phương của một số hữu tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x\left(x+5\right)-\left(18+3x\right)\left(x-1\right)-1\)
\(=3x^2+15x-18x+18-3x^2+3x-1\)
\(=18-1\)
\(=17\)
\(\Rightarrow\)\(3x\left(x+5\right)-\left(18+3x\right)\left(x-1\right)-1\)không phụ thuộc vào biến
đpcm
a: \(ax+by+cz\)
\(=x^3-xyz+y^3-xyz+z^3-xyz\)
\(=x^3+y^3+z^3-3xyz\)
b: \(ax+by+cz\)
\(=x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3yxz\)
\(=\left(x+y+z\right)\left(x^2+y^2+2xy-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
vì có 1 chút nhầm lẫn nên giờ mk mới ra mong bạn thứ lỗi
bài 1
\(\Leftrightarrow\frac{4a^4}{2a^3+2a^2b^2}+\frac{4b^4}{2b^3+2c^2b^2}+\frac{4c^4}{2c^3+2a^2c^2}\)
\(\ge\frac{\left(2a^2+2b^2+2c^2\right)^2}{2a^3+2b^3+2c^3+2a^2b^2+2c^2b^2+2a^2c^2}\)
\(\ge\frac{36}{a^4+a^2+b^4+b^2+c^4+c^2+2a^2b^2+2c^2b^2+2a^2c^2}\)
\(=\frac{36}{\left(a^2+b^2+c^2\right)^2+a^2+b^2+c^2}=3\ge a+b+c\)
Dấu bằng xảy ra khi \(a=b=c=1\)
Bài 2 là chuyên Bình Thuận, 2016-2017
Áp dụng bất đẳng thức Cauchy – Schwarz, ta có:
\(\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)
Tương tự: \(\frac{yz}{y^2+zx+xy}\le\frac{xy\left(z^2+zx+xy\right)}{\left(xy+yz+zx\right)^2}\);\(\frac{zx}{z^2+xy+yz}\le\frac{zx\left(x^2+xy+yz\right)}{\left(xy+yz+zx\right)^2}\)
Cộng từng vế của 3 BĐT trên. ta được:
\(VT\le\frac{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}{\left(xy+yz+zx\right)^2}=\frac{x^2+y^2+z^2}{xy+yz+zx}\)
Đẳng thức xảy ra khi x = y = z
\(ax+by+cz\\ =x\left(x^2-yz\right)+y\left(y^2-xz\right)+z\left(z^2-xy\right)\\ =x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
Lại có \(a+b+c=x^2+y^2+z^2-xy-yz-xz\)
Vậy ta được đpcm
a) \(4\left(xy+yz+zx\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\) là bình phương 1 số hữu tỉ => 4(xy+yz+zx) cũng là bp số hữu tỉ mà 4=22 => xy+yz+zx là bp 1 số hữu tỉ
b) \(x^2+y^2+z^2=2\left(xy+yz+zx\right)\)\(\Leftrightarrow\)\(\left(x+y\right)^2+z^2=4xy+2yz+2zx\)
\(\Leftrightarrow\)\(\left(x+y\right)^2-2z\left(x+y\right)+z^2=4xy\)\(\Leftrightarrow\)\(\left(x+y-z\right)^2=4xy\)
Do (x+y-z)2 là bình phương 1 số hữu tỉ => 4xy là bp số hữu tỉ => xy là bp số hữu tỉ
a)(x-y)3+(y-z)3+(z-x)3
=3(x-y+y-z+z-x)=3
b)nhân vào là rồi đối trừ là hết luôn ( nhưng là mũ 2 hay nhân 2 v mk là theo nhân 2 nhé]
Câu hỏi của Nguyễn Phong - Toán lớp 8 - Học toán với OnlineMath