Cho M,N,P là điểm chính giữa ba cạnh BC,CA,AB của tam giác ABC.Chứng ,minh các đoạn AM,BN,CP cắt nhau tại một điểm mà điểm này nằm ở 1/3 mỗi đoạn kể từ đáy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có S GMB = S GMC(vì MB=MC,chung chiều cao hạ từ G) (1)
S GNC=S GNA(vì NA=NC,chung chiều cao hạ từ G) (2)
Lại có:S BCN=1/2 S ABC (2 tam giác có chung chiều cao hạ từ B và đáy CN=1/2 CA)
S ACM=1/2 S ABC (2 tam giác có chung chiều cao hạ từ A và đáy CM=1/2 CB)
=>S BCN=S ACM
Mà S ACM và S BCN cùng có chung S GCM+S GCN
=>S GMB=S GNA (3)
Từ (1),(2),(3) ta có:
S GMC=S GNC=S GNA hay S GMC=1/3(S GMC+S GNC+S GNA)
=>S GMC=1/3 S CMA,hay GM=1/3AM (2 tam giác CMA và CMG có chung chiều cao hạ từ C)
Do đó,BN cắt AM tại G ở 1/3 của AM kể từ đáy.
(Tương tự ta chứng minh được CP cũng cắt AM tại G ở 1/3 của AM kể từ đáy)
Vậy ba đoạn AM,BN,CP cắt nhau ở một điểm G nằm ở 1/3 của mỗi đoạn kể từ đáy.
Bài này lên cấp 2 sẽ gọi là trọng tâm, giao điểm 3 đường trung tuyến.
Ta có: M trung điểm BC, N trung điểm AC. 2 đoạn này cắt nhau tại H.
CH cắt AB tại P.
Gọi D đối xứng H qua M, E đối xứng H qua N.
Chứng minh AECH, BDCH là các hình bình hành.
Chứng minhAEDB là hình bình hành => H t điểm EB EP//AE
=> P trung điểm AB
Câu sau dễ rồi.
B1: Chứng minh AM, BN, CP chia tam giác ABC thành 6 tam giác có diện tích bằng nhau. B2: => S( AOB) =2/3 S(ANB) => OB = 2/3 BN S(AOC) =2/3 S(ACP) => OC =2/3 CP S(AOB) = 2/3 S(AMB) => OA = 2/3 AM B3: kết luận
B1: Chứng minh AM, BN, CP chia tam giác ABC thành 6 tam giác có diện tích bằng nhau.
B2:
=> S( AOB) =2/3 S(ANB) => OB = 2/3 BN
S(AOC) =2/3 S(ACP) => OC =2/3 CP
S(AOB) = 2/3 S(AMB) => OA = 2/3 AM
B3: kết luận