timx:
12-2:(x+3)=9
yx12-50=yx7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{7}{12}+x=\dfrac{3}{2}\)
\(\Rightarrow x=\dfrac{3}{2}-\dfrac{7}{12}\)
\(\Rightarrow x=\dfrac{18}{12}-\dfrac{7}{12}\)
\(\Rightarrow x=\dfrac{11}{12}\)
Vậy: \(x=\dfrac{11}{12}\)
áp dụng tính chất dảy tỉ số bằng nhau
ta có : \(\dfrac{2\left(x-1\right)+3\left(y-2\right)-\left(z-3\right)}{\left(2.2\right)+\left(3.3\right)-4}=\dfrac{2x-2+3y-6-z+3}{4+9-4}\)
\(=\dfrac{\left(2x+3y-z\right)-5}{9}=\dfrac{50-5}{9}=\dfrac{45}{9}=5\)
suy ra ta có : \(\left\{{}\begin{matrix}\dfrac{x-1}{2}=5\\\dfrac{y-2}{3}=5\\\dfrac{z-3}{4}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-1=2.5\\y-2=3.5\\z-3=4.5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-1=10\\y-2=15\\z-3=20\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=10+1\\y=15+2\\z=20+3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\) vậy \(x=11;y=17;z=23\)
Bài 1:
Mẹ còn số gói bánh là:
50 - 30 = 20 ( gói bánh )
Đáp số: 20 gói bánh
Bài 2:
x + 12 = 14
x = 14 - 12
x = 2
Giải:
a) Ta có:
\(\left(x^4\right)^2=\frac{x^{12}}{x^5}\left(x\ne0\right)\Leftrightarrow x^8=x^7\)
\(\Leftrightarrow x^8-x^7=0\Leftrightarrow x^7\left(x-1\right)=0\)
\(\Leftrightarrow x-1=0\left(x^7\ne0\right)\Leftrightarrow x=1\)
Vậy \(x=1\)
b) Ta có:
\(x^{10}=25x^8\Leftrightarrow x^{10}-25x^8=0\)
\(\Leftrightarrow x^8\left(x^2-25\right)=0\Leftrightarrow\) \(\left[\begin{array}{}x^8=0\\x^2-25=0\end{array}\right.\)
\(\Leftrightarrow\) \(\left[\begin{array}{}x=0\\x=5\\x=-5\end{array}\right.\) Vậy...
ta có:
x-y+y-z+x+z=8+10+12
2x=30
x=30:2=15
y=15-8=7
z=7-10=-3
khi đó: x+y+z=15+7+(-3)=19
+) x : y = 3 => x = 3y
+) x.y = 12 => 3y.y = 12 => y2 = 4 => y = 2 hoặc y = -2 => x = 2.3 = 6 hoặc x = 3.(-2) = -6
+) kiểm tra: 6 + 1 = 7 khác 2 + 2 = 4 => Loại
-6 + 1 = -5 khác -2 + 2 = 0 => Loại
Vậy không tồn tại x; y thỏa mãn
Ta có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x.\left(x+1\right)}=\frac{2008}{2009}\)
\(\Leftrightarrow\)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{2008}{2009}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2009}\)
\(\Leftrightarrow x+1=2009\)
\(\Leftrightarrow x=2008\)
Vậy x = 2008
\(=>\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{x.\left(x+1\right)}=\frac{2008}{2009}\)
\(=>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(=>1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(=>\frac{x}{x+1}=\frac{2008}{2009}=>x=2008\)
\(a,12-2:\left(x+3\right)=9\)
\(\Leftrightarrow2:\left(x+3\right)=3\)
\(\Leftrightarrow x+3=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{-7}{3}\)
12-2:(x+3)=9
=> 12 - 2x - 6 = 9
=> -2x = 9+6-12 = 3
=> x= -1,5
12xy - 50 = 7xy
=> 12xy -7xy= 50
=> 5xy=50
=> xy = 10
=> x = 10/y