Giải bpt và bd trên trục số: (4x-1)(X-5)<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)
Ta có \(x^2+1\ge1>0\forall x\)
Để bpt < 0 => 2x( 3x - 5 ) < 0
Xét hai trường hợp :
1/ \(\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}\Rightarrow}0< x< \frac{5}{3}\)
2. \(\hept{\begin{cases}2x< 0\\3x-5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x>\frac{5}{3}\end{cases}}\)( loại )
Vậy nghiệm của bất phương trình là 0 < x < 5/3
b) \(\frac{x}{x-2}+\frac{x+2}{x}>2\)( ĐKXĐ : \(x\ne0,x\ne2\))
<=> \(\frac{x}{x-2}+\frac{x+2}{x}-2>0\)
<=> \(\frac{x^2}{x\left(x-2\right)}+\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}-\frac{2x\left(x-2\right)}{x\left(x-2\right)}>0\)
<=> \(\frac{x^2+x^2-4-2x^2+4x}{x\left(x-2\right)}>0\)
<=> \(\frac{4x-4}{x\left(x-2\right)}>0\)
\(x\left(x-2\right)>0\Leftrightarrow\orbr{\begin{cases}x>2\\x< 0\end{cases}}\)
\(x\left(x-2\right)< 0\Leftrightarrow0< x< 2\)
Xét các trường hợp
1/ \(\hept{\begin{cases}4x-4>0\\x\left(x-2\right)>0\end{cases}}\)
+) \(\hept{\begin{cases}4x-4>0\\x>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>2\end{cases}}\Leftrightarrow x>2\)
+) \(\hept{\begin{cases}4x-4>0\\x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x< 0\end{cases}}\)( loại )
2/ \(\hept{\begin{cases}4x-4< 0\\x\left(x-2\right)< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\0< x< 2\end{cases}}\Rightarrow0< x< 1\)
Vậy nghiệm của bất phương trình là x > 2 hoặc 0 < x < 1
c) \(\frac{2x-3}{x+5}\ge3\)( ĐKXĐ : \(x\ne-5\))
\(\Leftrightarrow\frac{2x-3}{x+5}-3\ge0\)
\(\Leftrightarrow\frac{2x-3}{x+5}-\frac{3\left(x+5\right)}{\left(x+5\right)}\ge0\)
\(\Leftrightarrow\frac{2x-3-3x-15}{x+5}\ge0\)
\(\Leftrightarrow\frac{-x-18}{x+5}\ge0\)
Xét hai trường hợp
1/ \(\hept{\begin{cases}-x-18\ge0\\x+5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-18\\x>-5\end{cases}}\)( loại )
2/ \(\hept{\begin{cases}-x-18\le0\\x+5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-18\\x< -5\end{cases}}\Leftrightarrow-18\le x< -5\)
Vậy nghiệm của bất phương trình là \(-18\le x< -5\)
d) \(\frac{x-1}{x-3}>1\)( ĐKXĐ : \(x\ne3\))
\(\Leftrightarrow\frac{x-1}{x-3}-1>0\)
\(\Leftrightarrow\frac{x-1}{x-3}-\frac{x-3}{x-3}>0\)
\(\Leftrightarrow\frac{x-1-x+3}{x-3}>0\)
\(\Leftrightarrow\frac{2}{x-3}>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
Vậy nghiệm của bất phương trình là x > 3
ây bẹn ơi :<<<<
câu 3 ~
....
bạn vt sai chính tả ròi kìa :)) hé hé (cộng cả 2 vế của ...)
BĐT là bất đẳng thức mà, sai chỗ nào :VVVVV Miyuki Misaki
(Mk nghĩ bài 1 là 7m + 10 với 7n + 10, hoặc ngược lại, mk sẽ làm 2 TH)
1, TH1: Ta có: m < n
\(\Leftrightarrow\) 7m < 7n (nhân 2 vế của BĐT với 7)
\(\Leftrightarrow\) 7m + 10 < 7m + 10 (cộng 2 vế của BĐT với 10)
TH2: Ta có m < n
\(\Leftrightarrow\) -7m > -7n (nhân 2 vế của BĐT với -7)
\(\Leftrightarrow\) -7m + 10 > -7n + 10 (cộng 2 vế của BĐT với 10)
2, Biểu diễn bn tự làm nhé!
a, -4x + 8 \(\ge\) 0
\(\Leftrightarrow\) -4x \(\ge\) -8 (Cộng cả 2 vế của BĐT với -8)
\(\Leftrightarrow\) x \(\le\) 2 (Chia 2 vế của BĐT với -4)
b, 5 + 2x < 0
\(\Leftrightarrow\) 2x < -5 (cộng cả hai vế của BĐT với -5)
\(\Leftrightarrow\) x < \(\frac{-5}{2}\) (Chia cả hai vế của BĐT với 2)
3,
a, Ta có: 3x + 2 > 2(1 - 2x)
\(\Leftrightarrow\) 3x + 2 > 2 - 4x
\(\Leftrightarrow\) 3x > -4x (cộng cả vế cùa BĐT với -2)
\(\Leftrightarrow\) Vì 3 > -4 mà 3x > -4x
\(\Rightarrow\) x > 0 (Vì BĐT cùng chiều khi nhân x)
Vậy x > 0
b, Ta có: x - 3 < \(\frac{6-2x}{5}\)
\(\Leftrightarrow\) x - 3 < \(\frac{2\left(3-x\right)}{4}\)
\(\Leftrightarrow\) 4(x - 3) < 2(3 - x) (Nhân cả vế của BĐT với 4)
\(\Leftrightarrow\) 4(x - 3) < -2(x - 3)
Vì 4 > -2 mà 4(x - 3) < -2(x - 3)
\(\Rightarrow\) x - 3 < 0 (vì BĐT ngược chiều)
\(\Leftrightarrow\) x < 3 (Cộng cả hai vế của BĐT với 3)
Vậy x < 3
4, |-3x| = x + 6
\(\Leftrightarrow\left[{}\begin{matrix}-3x=x+6\Leftrightarrow-4x=6\Leftrightarrow x=\frac{-3}{2}\\-3x=-x-6\Leftrightarrow-2x=-6\Leftrightarrow x=3\end{matrix}\right.\)
Vậy S = {\(\frac{-3}{2}\); 3}
Chúc bn học tốt!!
| 2-4x | = 4x-2
<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)
<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)
<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)
=> \(S=\left\{\frac{1}{2};\infty\right\}\)
2x-7> 3(x-1)
<=>2x-7>3x-3
<=>2x-3x>-3+7
<=>-x>4
<=>x<4
=>S={x/x<4}
1-2x<4(3x-2)
<=>1-2x<12x-8
<=>-2x-12x<-8-1
<=>-14x<-9
<=>x>\(\frac{9}{14}\)
=>S={\(\frac{9}{14}\)}
-3x+2|-4 -x|> 0
<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)
<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)
=>S={x/x<3;x/x<\(\frac{1}{4}\)}
4x-1|x-2|< 0
<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)
<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)
=>S={x/x<\(\frac{-1}{3}\);x/x<1}
bạn phân tích biểu thức thành nhân tử rồi xét :
Nếu >0 thì các nhân tử phải cùng âm hoặc dương
nếu <0 thì các nhân tử trái dấu
tương tự như phân số
nếu >0 thì tử và mẫu cùng dấu
nếu <0 thì trái dấu
:) chúc bạn làm tốt nha dễ mà
Xin phép bỏ biểu diễn trên trục :))
a) \(2x-1< 2\left(x-1\right)\)
\(\Leftrightarrow2x-1< 2x-2\)
\(\Leftrightarrow2x-2x< 1-2\)
\(0x< -1\)( vô lí )
Vậy bất phương trình vô nghiệm.
b) \(\frac{x-1}{3}-\frac{2+3x}{4}>\frac{1}{6}\)
\(\Leftrightarrow\frac{4\left(x-1\right)-3\left(2+3x\right)}{12}>\frac{2}{12}\)
\(\Leftrightarrow4x-4-6-9x>2\)
\(\Leftrightarrow-5x-10>2\)
\(\Leftrightarrow-5x>12\)
\(\Leftrightarrow x< \frac{-12}{5}\)
Vậy...........
\(\left(4x-1\right)\left(x-5\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}4x-1>0\\x-5< 0\end{cases}}\) hoặc \(\hept{\begin{cases}4x-1< 0\\x-5>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>\frac{1}{4}\\x< 5\end{cases}}\) hoặc \(\hept{\begin{cases}x< \frac{1}{4}\\x>5\end{cases}}\) (loại)
\(\Leftrightarrow\frac{1}{4}< x< 5\)
Biểu diễn dễ mà, bạn tự biểu diễn nha (1/4 < x < 20/4)