K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2022

oh

(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2...
Đọc tiếp

(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25^2 -1)(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25-(a.b^2-a) với a= -1 , b=(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25 25(a^2 +b^2 -1)-(a.b^2(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25-a) với a= -1 (a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25=5 25

12
26 tháng 12 2018

Cậu thậc thú zị :v

một câu hỏi rất đáng khen ,.. very good!

13 tháng 1 2018

a, đề phải là 1/a.(a+1) = 1/a - 1/a+1 chứ bạn !

Có : 1/a.(a+1) = (a+1)-a/a.(a+1) = a+1/a.(a+1) - a/a.(a+1) = 1/a - 1/a+1

=> 1/a.(a+1) = 1/a - 1/a+1

b, Có : 2/a.(a+1).(a+2) = (a+2)-a/a.(a+1).(a+2) = a+2/a.(a+1).(a+2) - a/a.(a+1).(a+2) = 1/a.(a+1) - 1/(a+1).(a+2)

=> 2/a.(a+1).(a+2) = 1/a.(a+1) - 1/(a+1).(a+2)

Tk mk nha

13 tháng 1 2018

a, \(VP=\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}==\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}=VT\)

b, \(VP=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}=\frac{a+2-a}{a\left(a+1\right)\left(a+2\right)}=\frac{2}{a\left(a+1\right)\left(a+2\right)}=VT\)

AH
Akai Haruma
Giáo viên
4 tháng 10 2024

Lời giải:

a.

$(\frac{1}{2}-1)(\frac{1}{3}-1)(\frac{1}{4}-1).....(\frac{1}{100}-1)$

$=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}....\frac{-99}{100}$

$=\frac{(-1)(-2)(-3)...(-99)}{2.3.4...100}$

$=\frac{-(1.2.3...99)}{2.3.4...100}=\frac{-1}{100}$

b.

$(1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})....(1-\frac{1}{a+1})=1$

$\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{a}{a+1}=1$

$\frac{1.2.3....a}{2.3.4...(a+1)}=1$

$\frac{1}{a+1}=1$

$\Rightarrow a+1=1\Rightarrow a=0$