K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2018

\(2^{x+1}.3^y=12^x\)

\(\Rightarrow2^{x+1}.3^y=3^x.4^x\)

\(\Rightarrow2^{x+1}.3^y=3^x.2^{2x}\)

\(\Rightarrow\orbr{\begin{cases}2^{x+1}=2^{2x}\\3^y=3^x\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x+1=2x\\y=x\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\\text{Vì y = x}\Rightarrow y=1\end{cases}}\)

a: \(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

3 tháng 12 2021

làm rõ ra đc ko bn

9 tháng 8 2019

a) \(A=7x^2-2x+1=7\left(x^2-\frac{2}{7}x+\frac{1}{7}\right)\)

\(=7\left(x^2+\frac{2}{7}x+\frac{1}{49}+\frac{6}{49}\right)\)

\(=7\left[\left(x+\frac{1}{7}\right)^2+\frac{6}{49}\right]=7\left(x+\frac{1}{7}\right)^2+\frac{6}{7}\ge\frac{6}{7}\)

Vậy \(A_{min}=\frac{6}{7}\Leftrightarrow x=\frac{-1}{7}\)

17 tháng 3 2019

ĐKXĐ: \(2x-y-1\ge0;x+2y\ge0\)

Đặt \(\sqrt{2x-y-1}=a;\sqrt{x+2y}=b\left(a,b\ge0\right)\). Khi đó ta có:

\(\left(2b^2-1\right)a=\left(2a^2-1\right)b\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)

\(\Leftrightarrow a=b\) hoặc \(2ab+1=0\)(loại vì \(a,b\ge0\))

Suy ra: \(\sqrt{2x-y-1}=\sqrt{x+2y}\Leftrightarrow x=3y+1\)

Pt đầu tiên trở thành: \(\left(3y+1\right)^2-5y^2-8y=3\)

\(\Leftrightarrow\left(y-1\right)\left(2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=1\\y=-\frac{1}{2}\end{cases}}\)

+) Với  \(y=1\Rightarrow x=4\Rightarrow\left(x;y\right)=\left(4;1\right)\)(tm)

+) Với  \(y=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}\Rightarrow\left(x;y\right)=\left(-\frac{1}{2};-\frac{1}{2}\right)\) (loại)

Vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(4;1\right).\)

1 tháng 10 2017

\(2x^2+2y^2-4xy+2x-2y+4\)

\(=2\left(x-y\right)^2+2\left(x-y\right)+4\)

\(=2\left[\left(x-y\right)^2+2\left(x-y\right)\frac{1}{2}+\frac{1}{4}\right]+\frac{7}{2}\)

\(=2\left(x-y+\frac{1}{2}\right)^2+\frac{7}{2}\)

\(\Rightarrow A\ge\frac{7}{2}\)

Dấu = bn tự tính nhé

2 tháng 6 2017

\(\left(2x-1\right)^3-8\left(x-1\right)\left(x^2+x+1\right)+12x^2=2x+1\)

\(\Leftrightarrow8x^3-12x^2+6x-1-8\left(x^3-1\right)+12x^2-2x-1=0\)

\(\Leftrightarrow4x+6=0\)

\(\Leftrightarrow2\left(2x+3\right)=0\)

\(\Leftrightarrow2x=-3\)

\(\Leftrightarrow x=\frac{-3}{2}\)

2 tháng 6 2017

đề sai nhé

phải là

8. (x-1) . (x2+x+1)

Ta có: \(-2x\left(x+5\right)+\left(2x^2+4\right)+10x\)

\(=-2x^2-10x+2x^2+4+10x\)

=4

9 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)

\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)

\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

29 tháng 6 2019

I 2x-3 I = I x+1 I

2x-3 = x+1

x+1 - 2x+3=0

x (1-2) +1+3=0

-1x +4 =0

-1x      = 0-4

-1x      =-4

x          = -4 : -1

x         =4

Trả lời:

    \(\left|2x-3\right|=\left|x+1\right|\)

\(\Rightarrow2x-3=x+1\) hoặc   \(2x-3=-\left(x+1\right)\)

TH1:   \(2x-3=x+1\)

           \(2x-x=1+3\)

            \(x=4\)

TH2: \(2x-3=-\left(x+1\right)\)

         \(2x-3=-x-1\)

          \(2x+x=-1+3\)

          \(3x=2\)

          \(x=\frac{2}{3}\)

          Vậy \(x=4;x=\frac{2}{3}\)