Tìm các số nguyên dương x, y sao cho 8x3 + y3 - 6xy + 1 là số nguyên tố
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TV
1
16 tháng 1 2021
Không hiểu sao cái dòng đó lại nhảy như thế. Mình đánh lại.
Giả thiết tương đương với:
\((x+y+1)(x^2+y^2+1-xy-x-y)=p\).
Do x + y + 1 > 1 và p là số nguyên tố nên x + y + 1 = p và \(x^2+y^2+1-x-y-xy=1\Leftrightarrow\left(x+y\right)^2-\left(x+y\right)=3xy\le\dfrac{3}{4}\left(x+y\right)^2\Rightarrow x+y\le4\Rightarrow p\le5\).
Ta thấy 5 là số nguyên tố. Đẳng thức xảy ra khi x = y = 2.
Vậy max p = 5 khi x = y = 2.
\(8x^3+y^3-6xy+1=\left(2x+y\right)^3\)\(-6xy\left(2x+y\right)-6xy+1\)
\(\Leftrightarrow\left(2x+y+1\right)\)\(\left[\left(2x+y\right)^2-\left(2x+y\right)+1-6xy\right]\)
\(\Leftrightarrow\left(2x+y+1\right)\)\(\left(4x^2+y^2-2x-y-2xy+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}2x+y+1=1\\4x^2+y^2-2x-y-2xy+1=1\end{cases}}\)
Xét nốt các trường hợp là xong
Xét TH2 thế nào vậy bạn. Mình cũng đang cần nhưng không biết làm