phân tích đa thức thàh nhân tử
ax-ay+bx-by
x^2-2xy+y^2-1
9-x^2-2xy-y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ax+bx+ay+by\)
\(=x\left(a+b\right)+y\left(a+b\right)\)
\(=\left(x+y\right)\left(a+b\right)\)
\(xy+1-x-y\)
\(=x\left(y-1\right)-\left(y-1\right)\)
\(=\left(x-1\right)\left(y-1\right)\)
a,x^2-x-y^2-y
=x^2-y^2-(x+y)
=(x-y).(x+y)-(x+y)
=(x+y).(x-y-1)
b, x^2-2xy+y^2-z^2
=(x^2-2xy+y^2)-z^2
=(x-y)^2-z^2
=(x-y-z)(x-y+z)
c,5x-5y+ax-ay( đề bài ở đây phải là -ay ms tính đc)
=(5x-5y)+(ax-ay)
=5(x-y)+a(x-y)
=(x-y).(5+a)
d,a^3-a^2.x-ay+xy
=(a^3-a^2x)-(ay-xy)
=a^2(a-x)-y(a-x)
=(a-x)(a^2-y)
e,4x^2-y^2+4x+1
={(2x)^2+4x+1}-y^2
=(2x+1)^2-y^2
=(2x+1+y^2)(2x+1-y^2)
f,x^3-x+y^3-y
=(x^3+y^3)-(x+y)
=(x+y)(x^2-xy+y^2)-(x+y)
=(x+y)(x^2-xy+y^2-1)
\(1,=\left(x-3\right)\left(x+3\right)\\ 2,=\left(x-y\right)\left(5+a\right)\\ 3,=\left(x+3\right)^2\\ 4,=\left(x-y\right)\left(10x+7y\right)\\ 5,=5\left(x-3y\right)\\ 6,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
a) \(ax+ay-3x-3y=a\left(x+y\right)-3\left(x+y\right)=\left(a-3\right)\left(x+y\right)\)
b) \(x^3-3x^2+3x-9=x^2\left(x-3\right)+3\left(x-3\right)=\left(x-3\right)\left(x^2+3\right)\)
c) xem lại đề
d) \(9-x^2-2xy-y^2=9-\left(x+y\right)^2=\left(3-x-y\right)\left(3+x+y\right)\)
Bài 1:
\(=3x^3y-6x^2y^2+15xy\)
Bài 2:
\(=\left(x+y\right)^2-25=\left(x+y+5\right)\left(x+y-5\right)\)
\(x^2+2xy-25+y^2\\ =\left(x^2+2xy+y^2\right)-5^2\\ =\left(x+y\right)^2-5^2\\ =\left(x+y-5\right)\left(x+y+5\right)\)
1) x2 - x - y2 - y = (x - y)(x + y) - (x + y) = (x - y - 1)(x + y)
2. x2 - 2xy + y2 - z2 = (x - y)2 - z2 = (x - y - z)(x - y + z)
3. 5x - 5y + ax - ay = 5(x - y) + a(x - y) = (a + 5)(x - y)
4. a3 - a2x - ay + xy = a2(a - x) - y(a - x) = (a2 - y)(a - x)
5. 4x2 - y2 + 4x + 1 = (2x + 1)2 - y2 = (2x + 1 - y)(2x + y + 1)
6. x3 - x + y3 - y = (x + y)(x2 - xy + y2) - (x + y) = (x + y)(x2 - xy + y2 - 1)
Trả lời:
1, x2 - x - y2 - y
= ( x2 - y2 ) - ( x + y )
= ( x - y ) ( x + y ) - ( x + y )
= ( x + y ) ( x - y - 1 )
2, x2 - 2xy + y2 - z2
= ( x2 - 2xy + y2 ) - z2
= ( x - y )2 - x2
= ( x - y - z ) ( x - y + z )
3, 5x - 5y + ax - ay
= ( 5x + ax ) - ( 5y + ay )
= x ( 5 + a ) - y ( 5 + a )
= ( 5 + a ) ( x - y )
= ( 5 + a ) ( x - y )
4, a3 - a2x - ay + xy
= ( a3 - a2x ) - ( ay - xy )
= a2 ( a - x ) - y ( a - x )
= ( a - x ) ( a2 - y )
5, 4x2 - y2 + 4x + 1
= ( 4x2 + 4x + 1 ) - y2
= ( 2x + 1 )2 - y2
= ( 2x + 1 - y ) ( 2x + 1 + y )
6, x3 - x + y3 - y
= ( x3 + y3 ) - ( x + y )
= ( x + y ) ( x2 - xy + y ) - ( x + y )
= ( x + y ) ( x2 - xy + y - 1 )
\(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x^2+2xy+y^2\right)-4x^2y^2\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
\(=\left(x-y\right)^2\left(x+y\right)^2\)
ax - ay + bx - by= (ax - ay) + (bx - by)
= a(x - y) + b(x - y)
= (x - y)(a + b)
x2 - 2xy + y2 - 1= (x2 - 2xy + y2) - 12
= (x - y)2 - 12
= (x - y - 1)(x - y + 1)
9 - x2 - 2xy - y2 = 32 - ( x2 + 2xy + y2 )
= 32 - ( x + y)2
= ( 3 - ( x + y)).(3 + ( x + y))
= (3 - x - y)(3 + x + y)