tìm x,y biết
x=3y=2z và 2x-3y+4z=48
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=3y=2z\)
\(\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{2}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{2-6+12}=\frac{48}{8}=6\)
Rồi thế vào là ra thôi :
\(\frac{2x}{2}=6\Rightarrow x=..........\)
Rồi tương tự thôi
6)
\(x=3y=2z\)
\(\Rightarrow\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{24}{9}\)
\(\Rightarrow\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}\)
7)
\(2x=3y=-2z\)
\(\Rightarrow\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\begin{cases}x=-12\\y=-8\\z=12\end{cases}\)
Bài 3 :
\(x=3y=2z\)
\(\Rightarrow x=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}\)
\(\Rightarrow\frac{2x}{2}=\frac{3y}{1}=\frac{4z}{2}=\frac{2x-3y+4z}{2-1+2}=\frac{k}{3}\)
\(\Rightarrow x=\frac{k}{3}\)
\(y=\frac{k}{3}.\frac{1}{3}=\frac{k}{9}\)
\(z=\frac{k}{3}.\frac{1}{2}=\frac{k}{6}\)
Từ \(2x=3y=-2z\Rightarrow\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{-\dfrac{1}{2}}\)
\(\Rightarrow\dfrac{2x}{1}=\dfrac{3y}{1}=\dfrac{4z}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có;
\(\dfrac{2x}{1}=\dfrac{3y}{1}=\dfrac{4z}{-2}=\dfrac{2x-3y+4z}{1-1+\left(-2\right)}=\dfrac{48}{-2}=-24\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{\dfrac{1}{2}}=-24\cdot\dfrac{1}{2}=-12\\\dfrac{y}{\dfrac{1}{3}}=-24\Rightarrow y=-24\cdot\dfrac{1}{3}=-8\\\dfrac{z}{-\dfrac{1}{2}}=-24\Rightarrow z=-24\cdot\left(-\dfrac{1}{2}\right)=12\end{matrix}\right.\)
\(2x=3y=-2z\)
\(\Rightarrow\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{-1}{2}}\)
\(\Rightarrow\dfrac{2x}{1}=\dfrac{3y}{1}=\dfrac{4z}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{1}=\dfrac{3y}{1}=\dfrac{4z}{-2}\)
\(=\dfrac{2x-3y+4z}{1-1+-2}=\dfrac{48}{-2}=-24\)
Áp dụng tính
Từ 2x = 3y = -2z suy ra \(\frac{2x}{1}=\frac{3y}{1}=\frac{2z}{-1}\)
\(=\frac{2x}{1}=\frac{3y}{1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1-1+\left(-2\right)}=\frac{48}{-2}=-24\)
Với \(\frac{2x}{1}=-24\Rightarrow x=-12\)
Với \(\frac{3y}{1}=-24\Rightarrow y=-8\)
Với \(\frac{4z}{-2}=-24\Rightarrow z=12\)
Vì 2x = 3y = -2z nên -3y = -2x , 4z = -4x
=> 2x-3y+4z = 2x-2x-4x = 48 <=> x = -12
=> y = -8 ; z = 12