K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

D = (x-1)(x+2)(x+3)(x+6)

D = (x-1)(x+6)(x+2)(x+3)

D = (x^2 + 6x - x - 6)(x^2 + 3x + 2x + 6)

D = (x^2 + 5x - 6)(x^2 + 5x + 6)

Đặt t = x^2 + 5x

=> D = (t - 6)(t + 6)

D = t^2 - 36

Có t^2 >= 0 => D = t^2 - 36 >= -36

Dấu ''='' xảy ra khi t^2 = 0 => t = 0 => x^2 + 5x = 0 => x.(x+5) = 0 => x = 0 hoặc x = -5.

Vậy Min của D bằng -36 khi x = 0 hoặc x = -5.

19 tháng 7 2018

D = (x-1)(x+2)(x+3)(x+6)

D = [(x-1)(x+6)].[(x+2)(x+3)]

D = (x^2 + 6x - x - 6)(x^2 + 3x + 2x + 6)

D = [(x^2 + 5x) - 6].[(x^2 + 5x) + 6]

D = (x^2 + 5x)^2 - 6^2 \(\ge\)-(6^2)

D = (x^2 + 5x)^2 + (-36) \(\ge\)-36

=> DMin = -36 đạt được khi x^2 + 5x = 0 <=> x(x+5) = 0 <=> x = 0 hoặc -5

29 tháng 1 2022

B=\(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)=\(\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

- Đặt t=\(x^2+5x-6\) 

=>B=t(t+12)=t2+12t=(t2+12t+36)-36 =(t+6)2-36≥-36

- minB=-36 ⇔ t+6=0 ⇔\(x^2+5x-6+6=0\) ⇔\(x\left(x+5\right)=0\) ⇔x=0 hay x=-5.

 

 

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

16 tháng 1 2022

\(A=\left(x-3\right)^2+\left(x+1\right)^2\)

\(\Rightarrow A=x^2-6x+9+x^2+2x+1\)

\(\Rightarrow A=2x^2-4x+10\)

\(\Rightarrow A=2\left(x^2-2x+5\right)\)

\(\Rightarrow A=2\left[\left(x^2-2x+1\right)+4\right]\)

\(\Rightarrow A=2\left(x-1\right)^2+8\)

Vì \(2\left(x-1\right)^2\ge0\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

\(\Rightarrow A=2\left(x-1\right)^2+8\ge8\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

Vậy \(A_{min}=8\Leftrightarrow x=1\)

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

14 tháng 8 2020

Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),

a) Ta có : \(x-y=3\Rightarrow x=3+y\).

Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)

\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)

\(\ge\left|3-y+y+1\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

b) Ta có : \(x-y=2\Rightarrow x=2+y\)

Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)

\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)

\(\ge\left|-2y-5+2y+1\right|=4\)

Các câu khác tương tự nhé em !

14 tháng 8 2020

Làm nốt câu c

                                                  Bài giải

c, Ta có : 

\(D=\left|2x+3\right|+\left|y+2\right|+2\ge\left|2x+3+y+2\right|+2=\left|3+3+2\right|+2=8+2=10\)

Dấu " = " xảy ra khi \(2x+y=3\)

Vậy \(\text{​​Khi }2x+y=3\text{​​ }Min_D=10\)

1 tháng 7 2021

Đk: \(2\le x\le4\)

Áp dụng BĐT bunhiacopxki có:

\(P^2=\left(\sqrt{x-2}+3\sqrt{4-x}\right)^2\le\left(1+3^2\right)\left(x-2+4-x\right)\)

\(\Leftrightarrow P^2\le20\)\(\Leftrightarrow P\le2\sqrt{5}\)

Dấu "=" xảy ra khi \(\sqrt{x-2}=\dfrac{\sqrt{4-x}}{3}\) \(\Leftrightarrow x=\dfrac{11}{5}\) (tm đk)

Có \(P^2=8\left(4-x\right)+6\sqrt{\left(x-2\right)\left(4-x\right)}+2\ge2\)\(\Rightarrow P\ge\sqrt{2}\)

Dấu "=" xảy ra khi x=4 (tm)

1 tháng 7 2021

cảm ơn bạn nhé :D