Cho: \(a^2+b^2+c^2-7a-8b-9c+25=0\)
Tính: D=\(\left(a-2\right)^{2014}+\left(b-3\right)^{2015}+\left(c-4\right)^{2016}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Ta có:\(|\frac{a}{2}-\frac{b}{3}|+|\frac{b}{4}-\frac{c}{3}|+|a+b+c-58|=0.\)
\(\Leftrightarrow\hept{\begin{cases}\frac{a}{2}-\frac{b}{3}=0\\\frac{b}{4}-\frac{c}{3}=0\\a+b+c-58=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{4}=\frac{c}{3}\\a+b+c=58\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{a}{8}=\frac{b}{12}=\frac{c}{9}\\a+b+c=58\end{cases}}}\)
\(\Leftrightarrow\frac{a+b+c}{8+12+9}=\frac{58}{29}=2\)
=> a/8=2 Vậy a=16
=> b/12=2 Vậy b=24
=> c/9=2 Vậy c=18
a) \(S=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2014\right)+2015\)
\(\Leftrightarrow S=\left(1-2\right)+\left(3-4\right)+....+\left(2013-2014\right)+2015\)
Vì từ 1 đến 2014 có 2014 số hạng => có 1007 cặp => Có 1007 cặp -1 và số 2015
\(\Rightarrow S=\left(-1\right)\cdot1007+2015\)
<=>S=-1007+2015
<=> S=1008
Gọi \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\Rightarrow a=2014k;b=2015k;c=2016k\left(1\right)\)
Thay (1) vào M ta có :
M=4(2014k-2015k)(2015k-2016k)-(2016k-2014k)2
=>M=4.-k.-k-4k2
=>M=4k2-4k2=0
Vậy M = 0
a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)
Mà \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)
Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)
- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)
Vậy ...
b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;