K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2018

Đặt \(\frac{a}{b}=\frac{c}{d}\)= k

=> a = bk

   c = dk

Ta có: VT= \(\frac{bk}{bk+dk}=\frac{bk}{k\left(b+d\right)}=\frac{b}{b+d}\)(1)

VP = ....

Mình nghĩ là bạn sai đề rồi, xem lại đi

11 tháng 8 2017

đề kiểu j đây bn?

6 tháng 4 2015

Ta có \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow a.d=b.c\Rightarrow a.\left(b+d\right)=b.\left(a+c\right)\Rightarrow a.b+a.d=b.a+b.c\)( vì 2 tích bằng nhau thêm 2 tích cùng 1 số giống thì tích đó không thay đổi)

\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\) 

            

     

6 tháng 4 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)                                                (1)

\(\Rightarrow\) a = kb ;  c  =  kd

\(\Rightarrow\frac{a+c}{b+d}=\frac{kb+kd}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)               (2)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)   (đpcm)

15 tháng 3 2016

Ta có tính chất dãy tỉ 

a/b = b/c = c/d = a+b+c/b+c+d

=> (a+b+c/b+c+d)3=(a+b+c/b+c+d)+(a+b+c/b+c+d)+(a+b+c/b+c+d)

=>  (a+b+c/b+c+d)3=a/b.b/c.c/d

=>  (a+b+c/b+c+d)3= a/d (đpcm)

15 tháng 3 2016

Ta có tính chất dãy tỉ 

a/b = b/c = c/d = a+b+c/b+c+d

=> (a+b+c/b+c+d)3=(a+b+c/b+c+d)+(a+b+c/b+c+d)+(a+b+c/b+c+d)

=>  (a+b+c/b+c+d)3=a/b.b/c.c/d

=>  (a+b+c/b+c+d)3= a/d (đpcm)

26 tháng 1 2016

nhaan 2 vé vào với nhau

27 tháng 1 2016

ko bt

 

5 tháng 2 2021

Ta thấy : b/a = d/c ⇒ad = bc (1)

Ta có: (a+2c)(b+d)=(a+c)(b+ad)

<=> ab+ad+2bc+2cd=ab+2ad+bc+2cd

<=> ab+ad+2bc+2cd-ab-2ad-bc-2cd=0

<=>-ad+bc=0<=>bc-ad=0<=>ad=bc=>(1) luôn đúng

=>ĐFCM

14 tháng 10 2021

Ta có : \(\frac{a}{b}=\frac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{a}{b}=\frac{c}{d}=\left(\frac{a}{b}\right)^2=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}=\left(\frac{c}{d}\right)^2=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\left(\text{do }\frac{a}{b}=\frac{c}{d}\right)\)

Vậy \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

15 tháng 10 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3\)

\(\Rightarrow\dfrac{a+b+c}{b+c+d}\times\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}=\dfrac{a}{d}\)

=> điều phải chứng minh

15 tháng 10 2018

cảm ơn bạn nha

24 tháng 7 2018

Theo dãy tỉ số bằng nhau

Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

=> ĐPCM

24 tháng 7 2018

Theo dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{a+c}{b+d}\)=\(\frac{a-c}{b-d}\)

=>ĐPCM