5 rưởi mình phải nộp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow164-4\left(x-5\right)=80\\ \Leftrightarrow4\left(x-5\right)=84\\ \Leftrightarrow x-5=21\Leftrightarrow x=26\)
2 - \(x\) = 17 - (-5)
2 - \(x\) = 17 + 5
2 - \(x\) = 22
\(x\) = 2 - 22
\(x\) = -20
a)
= (-12) + 27
= 15
b)
= (-5) -8
= -13
c)
= 19 - [15+6]
= 19 -21
= -2
a) (-12)-(-27)
= -12 + 27
= 15
b) (-5)-(+8)
= -5 - 8
= -13
c) 19-[15-(-6)]
= 19 - (15 + 6)
= 19 - 21
= -2
Lời giải:
$MN\parallel BC$ nên:
$\widehat{M}+\widehat{B}=180^0$ (hai góc trong cùng phía)
$\widehat{M}+75^0=180^0$
$\widehat{M}=105^0$
$\widehat{N}+\widehat{C}=180^0$ (hai góc trong cùng phía)
$\widehat{N}+45^0=180^0$
$\widehat{N}=180^0-45^0=135^0$
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)
nên \(\dfrac{x}{6}=\dfrac{y}{9}\left(1\right)\)
Ta có: \(\dfrac{x}{3}=\dfrac{z}{5}\)
nên \(\dfrac{x}{6}=\dfrac{z}{10}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}\)
Đặt \(\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6k\\y=9k\\z=10k\end{matrix}\right.\)
Ta có: \(x^2+y^2+z^2=21\)
\(\Leftrightarrow k^2=\dfrac{21}{217}\)
Trường hợp 1: \(k=\dfrac{\sqrt{93}}{31}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6k=\dfrac{6\sqrt{93}}{31}\\y=9k=\dfrac{9\sqrt{93}}{31}\\z=10k=\dfrac{10\sqrt{93}}{31}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{\sqrt{93}}{31}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6k=\dfrac{-6\sqrt{93}}{31}\\y=9k=\dfrac{-9\sqrt{93}}{31}\\z=10k=\dfrac{-10\sqrt{93}}{31}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{3}=\dfrac{z}{5}\Rightarrow\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}=\dfrac{x^2}{36}=\dfrac{y^2}{81}=\dfrac{z^2}{100}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}=\dfrac{x^2}{36}=\dfrac{y^2}{81}=\dfrac{z^2}{100}=\dfrac{x^2+y^2+z^2}{217}=\dfrac{21}{217}=\dfrac{3}{31}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{31}\cdot6=\dfrac{18}{31}\\y=\dfrac{3}{31}\cdot9=\dfrac{27}{31}\\z=\dfrac{3}{31}\cdot10=\dfrac{30}{31}\end{matrix}\right.\)
32\(\pi-64\) (cm2)