Tính A=\(\sqrt{25+4\sqrt{6}}+\sqrt[3]{54\sqrt{6}-73}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=4\sqrt{6}-15\sqrt{6}+\sqrt{\left(2+\sqrt{6}\right)^2}=-11\sqrt{6}+2+\sqrt{6}=2-10\sqrt{6}\\ b,=\dfrac{\sqrt{3}\left(\sqrt{6}-2\right)}{\sqrt{6}-2}+\dfrac{4\left(\sqrt{3}-1\right)}{2}+\left|3\sqrt{3}-12\right|=\sqrt{3}+2\sqrt{3}-2+12-3\sqrt{3}=10\)
5: \(=\dfrac{1}{x-y}\cdot x^3\cdot\left(x-y\right)^2=x^3\left(x-y\right)\)
\(\sqrt{10-4\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{2^2-2.2.\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{3^2-2.3.2\sqrt{6}+\left(2\sqrt{6}\right)^2}\)
\(=\sqrt{\left(2-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)
\(=-\left(2-\sqrt{6}\right)-\left(3-2\sqrt{6}\right)\)
\(=-2+\sqrt{6}-3+2\sqrt{6}\)
\(=-5+3\sqrt{6}\)
\(\sqrt{16-6\sqrt{7}}+\sqrt{32-8\sqrt{7}}\)
\(=\sqrt{3^2-2.3.\sqrt{7}+\left(\sqrt{7}\right)^2}+\sqrt{2^2-2.2.2\sqrt{7}+\left(2\sqrt{7}\right)^2}\)
\(=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{\left(2-2\sqrt{7}\right)^2}\)
\(=3-\sqrt{7}-\left(2-2\sqrt{7}\right)\)
\(=3-\sqrt{7}-2+2\sqrt{7}\)
\(=1+\sqrt{7}\)
a) \sqrt{-9a}-\sqrt{9+12 a+4 a^{2}}−9a−9+12a+4a2
=\sqrt{-9 a}-\sqrt{3^{2}+2.3 .2 a+(2 a)^{2}}=−9a−32+2.3.2a+(2a)2
=\sqrt{3^{2} \cdot(-a)}-\sqrt{(3+2 a)^{2}}=32⋅(−a)−(3+2a)2
=3 \sqrt{-a}-|3+2 a|=3−a−∣3+2a∣
Thay a=-9a=−9 ta được:
3 \sqrt{9}-|3+2 \cdot(-9)|=3.3-15=-639−∣3+2⋅(−9)∣=3.3−15=−6.
b) Điều kiện: m \neq 2m=2
1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}1+m−23mm2−4m+4
=1+\dfrac{3 m}{m-2} \sqrt{m^{2}-2.2 \cdot m+2^{2}}=1+m−23mm2−2.2⋅m+22
=1+\dfrac{3 m}{m-2} \sqrt{(m-2)^{2}}=1+m−23m(m−2)2
=1+\dfrac{3 m|m-2|}{m-2}=1+m−23m∣m−2∣
+) m>2m>2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1+3 m1+m−23mm2−4m+4=1+3m. (1)(1)
+) m<2m<2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1-3 m1+m−23mm2−4m+4=1−3m. (2)(2)
Với m=1,5<2m=1,5<2. Thay vào biểu thức (2)(2) ta có: 1-3 m=1-3.1,5=-3,51−3m=1−3.1,5=−3,5
Vậy giá trị biểu thức tại m=1,5m=1,5 là -3,5−3,5.
c) \sqrt{1-10 a+25 a^{2}}-4a1−10a+25a2−4a
=\sqrt{1-2.1 .5 a+(5 a)^{2}}-4 a=1−2.1.5a+(5a)2−4a
=\sqrt{(1-5a)^{2}}-4 a=(1−5a)2−4a
=|1-5 a|-4 a=∣1−5a∣−4a
+) Với a <\dfrac{1}{5}a<51, ta được: 1-5a-4 a=1-9a1−5a−4a=1−9a. (3)(3)
+) Với a \ge \dfrac{1}{5}a≥51, ta được: 5 a-1-4 a=a-15a−1−4a=a−1. (4)(4)
Vì a=\sqrt{2}>\dfrac{1}{5}a=2>51. Thay vào biểu thức (4)(4) ta có: a-1=\sqrt{2}-1a−1=2−1.
Vậy giá trị của biểu thức tại a=\sqrt{2}a=2 là \sqrt{2}-12−1.
d) 4 x-\sqrt{9 x^{2}+6 x+1}4x−9x2+6x+1
=4 x-\sqrt{(3 x)^{2}+2.3 x+1}=4 x-\sqrt{(3 x+1)^{2}}=4x−(3x)2+2.3x+1=4x−(3x+1)2
=4 x-|3x+1|=4x−∣3x+1∣
+) Với 3x+1 \geq 03x+1≥0 \Leftrightarrow⇔ x \ge -\dfrac{1}{3}x≥−31, ta có: 4 x-(3x+1)=4 x-3 x-1 =x-14x−(3x+1)=4x−3x−1=x−1. (5)(5)
+) Với 3x+1<03x+1<0 \Leftrightarrow⇔ x <-\dfrac{1}{3}x<−31, ta có: 4 x+(3 x+1)=4 x+3x+1=7x+14x+(3x+1)=4x+3x+1=7x+1. (6)(6)
Vì x=-\sqrt{3}<-\dfrac{1}{3}x=−3<−31. Thay vào biểu thức (6)(6), ta có: 7 x+1=7 .(-\sqrt{3})+1=-7 \sqrt{3}+17x+1=7 .(−3)+1=−73+1.
Giá trị của biểu thức tại x=-\sqrt{3}x=−3 là -7 \sqrt{3}+1−73+1.
a) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{57}+\sqrt{108}\)
\(=20\sqrt{3}-12\sqrt{3}-2\sqrt{57}+6\sqrt{3}\)
\(=\left(20-12+6\right)\sqrt{3}-2\sqrt{57}\)
\(=14\sqrt{3}-2\sqrt{57}\)
b) \(2\sqrt{24}-2\sqrt{54}+3\sqrt{6}-\sqrt{150}\)
\(=4\sqrt{6}-6\sqrt{6}+3\sqrt{6}-5\sqrt{6}\)
\(=\left(4-6+3-5\right)\sqrt{6}\)
\(=-4\sqrt{6}\)
bạn chỉ cần để ý tách hằng là oke
chỉ cho này \(11+6\sqrt{2}=3^3+2.3.\sqrt{2}+\sqrt{2}^2=\left(3+\sqrt{2}\right)^2\)
và cái đằng sau nữa cũng tương tự \(11-6\sqrt{2}=\left(3-\sqrt{2}\right)^2\)
biểu thức \(< =>\sqrt{4}.\left(3+\sqrt{2}\right)^2-\sqrt{9}.\left(3-\sqrt{2}\right)^2\)ok ?
câu b tự làm đi
\(2,\\ a,PT\Leftrightarrow\sqrt{\left(5x-1\right)^2}=\sqrt{4\left(x+1\right)^2}\\ \Leftrightarrow\left|5x-1\right|=2\left|x+1\right|\\ \Leftrightarrow\left[{}\begin{matrix}5x-1=2\left(x+1\right)\\1-5x=2\left(x+1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=3\\7x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{7}\end{matrix}\right.\)
\(b,ĐK:x^2-3\ge0\\ PT\Leftrightarrow\sqrt{x^2-3}=x-1\\ \Leftrightarrow x^2-3=x^2-2x+1\\ \Leftrightarrow2x=4\Leftrightarrow x=2\left(tm\right)\\ c,ĐK:x\le\dfrac{7}{2}\\ PT\Leftrightarrow7-2x=x^2+7\\ \Leftrightarrow x^2+2x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\\ d,ĐK:x\ge3\\ PT\Leftrightarrow3\sqrt{x-3}+\dfrac{1}{2}\cdot2\sqrt{x-3}-9\cdot\dfrac{1}{3}\sqrt{x-3}=2\\ \Leftrightarrow\sqrt{x-3}=2\\ \Leftrightarrow x-3=4\Leftrightarrow x=7\left(tm\right)\)
\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)
\(=\left|\sqrt{3}-1\right|\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)
\(\dfrac{x-25}{\sqrt{x}-5}-\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\sqrt{x}-5}-\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}+2}\)
\(=\sqrt{x}+5-\left(\sqrt{x}+2\right)=5-2=3\)
a: Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}+\sqrt{2}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
=3-1
=2
b: Ta có: \(\dfrac{x-25}{\sqrt{x}-5}-\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}\)
\(=\sqrt{x}+5-\sqrt{x}-2\)
=3