K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

e viết sai dấu BĐT rồi nhá 

phải là \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\Leftrightarrow x^2+y^2+2\left|xy\right|\ge x^2+y^2+2xy\Leftrightarrow\left|xy\right|\ge xy\)(luôn đúng theo BĐT về trị tuyệt đối 

^_^

16 tháng 9 2016

4858347

26 tháng 10 2016

trong vở bài tập toán lớp 7 tập 1 xoắn 11 bài 115 có  bài tương tự đó bạn

20 tháng 11 2021

Giả sử x + y = z là một số hữu tỉ.

Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ

Hay y ∈ Q trái giả thiết y là số vô tỉ

Vậy x + y là số vô tỉ

Giả sử z = x.y là một số hữu tỉ

Suy ra y = z : x mà x ∈ Q, z ∈ Q

Suy ra y ∈ Q trái giả thiết y là số vô tỉ

Vậy xy là số vô tỉ

28 tháng 6 2016

Vì \(\frac{a}{b}\) < \(\frac{c}{d}\)  nên ad < bc    (1)

Xét tích : a(b+d) =  ab + ad     (2)

                b(a+c) = ba + bc        (3)

Từ (1);(2);(3) suy ra a(b+d) < b(a+c) do đó \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)      (4)

Tương tự ta có : \(\frac{a+c}{b+d}\)  < \(\frac{c}{d}\)         (5)

Kết hợp (4);(5) ta được \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)  < \(\frac{c}{d}\)   

hay x < z < y

20 tháng 5 2017

Điều kiện \(\hept{\begin{cases}x\ge0\\y\ge0\end{cases}}\)

\(1+\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}\)

\(\Leftrightarrow\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1\)  (\(\sqrt{x}+\sqrt{y}-1>0\))

\(\Leftrightarrow\sqrt{x}+\sqrt{y}-\sqrt{xy}+1=0\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\) (\(\sqrt{xy}-1>0\))

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2=\left(\sqrt{xy}-1\right)^2\)

\(\Leftrightarrow4\sqrt{xy}=x+y-xy-1\)

Vì x, y nguyên nên \(\sqrt{xy}\) cũng phải nguyên

\(\Rightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\) nguyên  (1)

Ta lại có: 

\(x-y=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)

\(\Rightarrow\sqrt{x}-\sqrt{y}\) nguyên (2)

Lấy (1) + (2) và  (1) - (2) ta có:

\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}=2\sqrt{x}\\\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\end{cases}}\)

\(\Rightarrow\sqrt{x},\sqrt{y}\) là số nguyên

Vậy x, y là bình phương đúng của 1 số nguyên.

20 tháng 5 2017

mình sửa lại cái đề là: x, y nguyên nha m.n

12 tháng 8 2020

Với x = y \(\ge\)0=> \(\sqrt{x}=\sqrt{y}\) là số hữu tỉ

Với \(x\ne y>0\)

Đặt \(\sqrt{x}+\sqrt{y}=t\) là số hữu tỉ 

=> \(\frac{x-y}{\sqrt{x}-\sqrt{y}}=t\Rightarrow\sqrt{x}-\sqrt{y}=\frac{x-y}{t}\)  là số hữu tỉ 

=> \(\sqrt{x};\sqrt{y}\) là số hữu tỉ

20 tháng 8 2020

Vì \(\frac{a}{b}< \frac{c}{d}\) nên ad < bc   (1)

Xét tích : \(a\left(b+d\right)=ab+ad\)  (2)

\(b\left(a+c\right)=ba+bc\)    (3)

Từ (1) , (2) , (3) suy ra :

\(a\left(b+d\right)< b\left(a+c\right)\)  

Do đó :  \(\frac{a}{b}< \frac{a+c}{b+d}\)     (4)

Tương tự ta có :\(\frac{a+c}{b+d}< \frac{c}{d}\)   (5)

Từ (4) , (5) ta được : \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Hay \(x< z< y\)

16 tháng 6 2016

Vì \(\frac{a}{b}\)  < \(\frac{c}{d}\)  nên ad < bc     (1)

Xét tích 

a(b+d) = ab + ad       (2)

b(a+c)  = ba + bc        (3)

Từ (1),(2),(3) suy ra 

a(b+d) < b(a+c)  do đó :  \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)     (4)

Tương tự ta có \(\frac{a+c}{b+d}\)  < \(\frac{c}{d}\)    (5)

Từ (4),(5) ta được : \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)  < \(\frac{c}{d}\)  

Hay x < z < y

14 tháng 3 2019

Tham khảo: Câu hỏi của Nguyen Nhat Minh - Toán lớp 8 - Học toán với OnlineMath

Nếu olm không hiện link xanh đậm,hãy nhập link này vào trình duyệt của bạn:https://olm.vn/hoi-dap/detail/214469884091.html