tìm m,n nguyên thỏa mãn : 2m +3=n2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow3< =n^2< =36\)
mà n là số nguyên
nên \(n^2\in\left\{4;9;16;25;36\right\}\)
hay \(n\in\left\{2;-2;3;-3;4;-4;5;-5;6;-6\right\}\)
Vậy: Có 10 số nguyên n thỏa mãn bài toán
Tham khảo:D
Cách 1:
2^m + 2^n = 2^(m + n)
<=> 2^m = 2^(m + n) - 2^n
<=> 2^m = 2^n(2^m - 1)
<=> 2^(m - n) = 2^m - 1 (1)
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2).
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4).
(2) và (4) cho ta m = n và phương trình trở thành
2^(m + 1) = 2^(2m)
<=> m + 1 = 2m
<=> m = 1
Vậy phương trình có nghiệm m = n = 1.
Cách 2:
Trước hết, ta chứng minh rằng nếu a >= 2, b >= 2 thì a + b = ab khi và chỉ khi a = b = 2.
Thật vậy, không mất tính tổng quát, ta có thể giả sử a <= b.
Khi đó a + b <= 2b <= ab. Như vậy a + b = ab khi và chỉ khi a + b = 2b và 2b = ab, tức là a = b = 2.
Trở lại phương trình, đặt a = 2^m >= 2, b = 2^n >= 2, ta có a + b = ab nên a = b = 2, tức 2^m = 2^n = 2 hay m = n = 1.
chia hết
m-5 chia hết 2m+1
2(m-5) chia het 2m+1
2m-10 chia het 2m+1
2m+1-11 chia het 2m+1
11 chia het cho 2m+1
2m+1=U(11)={+-1,+-11}
2m={-12,-2,0,10}
m={-6,-1,0,5}
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Với m = 0 thì n = ± 2, thỏa mãn
Với m > 0 thì n^2 lẻ => n^2 = 3k + 1
Khi đó: 2^m + 3 = 3k + 1 <=> 2^m - 1 = 3(k-1)
=> 2^m -1 chia hết cho 3 hay 2^m ≡ 1 (mod 3)
mà 2 ≡ -1 (mod 3) => m chẵn
Đặt m = 2a (a ≠ 0)
2^m + 3 = 4^a + 3 = n^2 (vô lý vì một số chính phương không thể có dạng 4k + 3)
Vậy m = 0, n = ± 2 thỏa mãn đề bài