Tính\(\frac{\frac{9}{1}+\frac{8}{2}+...+\frac{1}{9}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tử số cộng thêm 1 vào mỗi phân số ở tử
là ra ngay nha bạn
k mình nha
Ta có :
\(P=\frac{\frac{6}{8}+\frac{6}{10}+\frac{6}{14}+\frac{6}{26}}{\frac{11}{4}+\frac{11}{5}+\frac{11}{7}+\frac{11}{13}}\)
\(\Rightarrow P=\frac{\frac{3}{4}+\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{11\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}\)
\(\Rightarrow P=\frac{3\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}{11\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}\)
\(\Rightarrow P=\frac{3}{11}\)
Vậy \(P=\frac{3}{11}\)
\(P=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{13}}=\frac{3}{11}\)
đề bài của bn sai nên mk sửa luôn nha
A = \(\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+...+\frac{1}{9}.\frac{1}{10}\)
A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
A = \(1-\frac{1}{10}\)
A = \(\frac{9}{10}\)
1/2=1-1/2 ; 1/2.1/3=1/2-1/3 ; 1/3.1/4=1/3-1/4...v...v
Vậy A bằng: 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5.............+1/8-1/9+1/9-1/10
=1-1/10=9/10
\(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+\frac{6}{4}+\frac{5}{5}+\frac{4}{6}+\frac{3}{7}+\frac{2}{8}+\frac{2}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+\frac{10}{4}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=10\)
\(A=\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{2}{8}+\frac{1}{9}\)
Tách 9=1+1+...+1 ( có 9 số 1)
\(\Rightarrow A=1+\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{2}{8}+1\right)+\left(\frac{1}{9}+1\right)\)
\(A=\frac{10}{10}+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{8}+\frac{10}{9}\)
\(A=10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)
\(\Rightarrow A:B=\frac{10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=10\) ( vì \(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\ne0\) )
Vậy \(A:B=10\)
\(\frac{\frac{9}{1}+\frac{8}{2}+...+\frac{1}{9}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=\frac{\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=10\)
Đặt S = \(\frac{\frac{9}{1}+\frac{8}{2}+...........+\frac{1}{9}}{\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{10}}\)
Đặt A là tử số, B là mẫu số
Xét A:
\(A=\frac{9}{1}+\frac{8}{2}+............+\frac{1}{9}\)
\(A=\left(9-1-1-......-1\right)+\left(\frac{8}{2}+1\right)+.........+\left(\frac{1}{9}+1\right)\)
\(A=1+\frac{10}{2}+.......+\frac{10}{9}\)
\(A=\frac{10}{1}+\frac{10}{2}+........+\frac{10}{9}\)
\(A=10\left(\frac{1}{2}+........+\frac{1}{9}\right)\)
Thay vào S ta có:
\(S=\frac{10\left(\frac{1}{2}+......+\frac{1}{9}\right)}{\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{10}}=10\)
Vậy S = 10