bài 1: tính các tổng sau theo cách hợp lý
A = 1+5 +5^2 +5^3 +...+5^1998
B=4+4^2 +4^3 +.....+4^n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a: x(x-4)=0
=>\(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
b: Đề thiếu vế phải rồi bạn
Bài 6:
a: \(\left(-5\right)\cdot\left(-6\right)\cdot\left(-4\right)\cdot2\)
\(=-\left(2\cdot5\right)\cdot\left(4\cdot6\right)\)
\(=-24\cdot10=-240\)
b: \(\left(-3\right)\cdot2\cdot\left(-8\right)\cdot5\)
\(=3\cdot2\cdot8\cdot5\)
\(=\left(3\cdot8\right)\cdot\left(2\cdot5\right)\)
\(=24\cdot10=240\)
a, ta có : 3A = 3 + 32 + 33 + ... + 3101
3A - A = ( 3+32 + 33+...+3101) - (1 + 3 + 32 + ... + 3100)
2A = 3101 - 1
A = (3101 - 1) : 2
tương tự tính b,c bạn nhé
Câu 5:
a: \(31\cdot\left(-18\right)+31\cdot\left(-81\right)-31\)
\(=31\left(-18-81-1\right)\)
\(=31\cdot\left(-100\right)=-3100\)
b: \(\left(-12\right)\cdot47+\left(-12\right)\cdot52+\left(-12\right)\)
\(=\left(-12\right)\left(47+52+1\right)\)
\(=-12\cdot100=-1200\)
c: \(13\cdot\left(23+22\right)-3\cdot\left(17+28\right)\)
\(=13\cdot45-3\cdot45\)
\(=45\cdot10=450\)
d: \(-48+48\left(-78\right)+48\left(-21\right)\)
\(=48\left(-1-78-21\right)\)
\(=48\left(-100\right)=-4800\)
Câu 4:
a: \(\left(-6-2\right)\left(-6+2\right)=\left(-8\right)\cdot\left(-4\right)=32\)
b: \(\dfrac{\left(7\cdot3-3\right)}{-6}=\dfrac{21-3}{-6}=\dfrac{18}{-6}=-3\)
c: \(\left(-5+9\right)\cdot\left(-4\right)=4\cdot\left(-4\right)=-16\)
d: \(\dfrac{72}{-6\cdot2+4}=\dfrac{72}{-12+4}=\dfrac{72}{-8}=-9\)
bạn làm chi tiết hộ mình 3 câu C,D,E. Mình đang gấp! tung nguyen viet
ko hieu bang cach hop la the nao
4C=4^2+4^3+..+4^(n+1)
4C-C=4^(n+1)-4=4(4^n-1)
C=4.(4^n-1)/3
5^2.D=5^2+5^4+..+5^202
5^2D-D=5^202-1
D=(5^202-1)/24
E=(2^202-1)/3
A= 2+2^2+2^3+2^4+...+2^100
2A=2^2+2^3+2^4+2^5+...+2^100+2^101
2A-A=(2^2+2^3+2^4+2^5+..+2^100+2^101)-(2+2^2+2^3+2^4+...+2^100)
A=2^101-2
A=2^100
B=1+3+3^2+3^3+...+3^2009
3B=3+3^2+3^3+3^4+...+3^2009+3^2010
3B+1=(1+3+3^2+3^3+3^4+...+3^2009)+3^2010
3B+1=B+3^2010
2B+1=3^2010
2B=3^2010-1
B=(3^2010-1):2
C=1+5+5^2+5^3+...+5^1998
5C=5+5^2+5^3+5^4+...+5^1998+5^1999
5C+1=(1+5+5^2+5^265^4+...+5^1998)+5^1999
5C+1=C+5^1999
4C+1=5^1999
4C=5^1999-1
C=(5^1999-1):5
D=4+4^2+4^3+...+4^n
4D=4^2+4^3+4^4+...+4^n+4^(n+1)
4D+4=(4+4^2+4^3+4^4+...+4^n)+4^(n+1)
4D+4=D+4^(n+1)
3D+4=4^(n+1)
3D=4^(n+1)-4
D=(4^(n+1)-4):3
1,
a) 1^3 + 2^3 + ... + 10^3 = ( x+1) ^2
( 1+2+3+4+5+...+10 ) ^ 2 = ( x+1) ^2
\(\left(\frac{10\times11}{2}\right)^2\)= ( x + 1 ) ^2
55^2 = ( x+1 ) ^2
=> x+1= 55 hoặc x + 1 = -55
x = 54 x = -56
Vậy : x = 54 hoặc x = -56
b, 1+3+5+...+99 = ( x-2 )^2
Đặt 1+3+5+...+99 là : A
=> Số các số hạng của A là : ( 99-1 ) : 2 + 1 = 50
=> A = ( 1+99 ) x 50 :2
A = 2500
Ta có : 2500 = ( x-2)^2
=> (x-2)^2 = 50^2 hoặc (x-2)^2 = (-50)^2
=> x-2=50 x - 2 = -50
x = 52 x = -48
Vậy : x = 52 hoặc x = -48
2,
a)A = 2^0 + 2^1 + 2^2 + ...+2^2006
2A = 2^1 + 2^2 + ... + 2^2007
2A - A = ( 2^1 + 2^2 + ... + 2^2007 ) - ( 2^0 + 2^1 + ... + 2^2006 )
A = 2^2007 - 2^0
A = 2^2007 - 1
Phần b Nhân với 3 làm tương tự
Phần c nhân với 4 lm tương tự
Phần d nhân với 5 làm tương tự
< Chúc bn hok tốt > nhớ k cho mik nhé
b1:
a)=3(1+2+3+4+5+6+7+8+9+10)
=3.55
=165
b)ta xét vế 1:
số các số hạng ở vế 1 là :(99-1):2+1=50 số
tổng số các số hạng ở vế 1 là:(1+99).(50:2)=250
ta có:(x-2).2=250
x-2=250:2
x-2=125
x=127
b2:
A=2(0+1+2+...+2006)
A=2 {[(2006+1):2].(2006+0)}
A=2(1004+(1003.2006))
A=4014044
B=3(1+2+3+...+100)
B=3((100:2).(100+1))
B=3.5050
B=15150
C=4(1+2+...+n)
C=4k(chứ ts đây mik chịu,thông cảm bn nhé!)
D=5(1+2+...+2000)
D=5((2000:2).(2000+1))
D=10005000
2:
a: \(=\dfrac{1}{3}\left(-\dfrac{4}{5}-\dfrac{6}{5}\right)=-\dfrac{1}{3}\cdot2=-\dfrac{2}{3}\)
1:
\(A=7-\dfrac{3}{4}+\dfrac{1}{3}-6-\dfrac{5}{4}+\dfrac{4}{3}-5+\dfrac{7}{4}-\dfrac{5}{3}\)
\(=-4-\dfrac{1}{4}=-\dfrac{17}{4}\)
Bài 1:
\(A=\left(7-\dfrac{3}{4}+\dfrac{1}{3}\right)-\left(6+\dfrac{5}{4}-\dfrac{4}{3}\right)-\left(5-\dfrac{7}{4}+\dfrac{5}{3}\right)\)
\(A=7-\dfrac{3}{4}+\dfrac{1}{3}-6-\dfrac{5}{4}+\dfrac{4}{3}-5+\dfrac{7}{4}-\dfrac{5}{3}\)
\(A=\left(7-6-5\right)-\left(\dfrac{3}{4}+\dfrac{5}{4}-\dfrac{7}{4}\right)+\left(\dfrac{1}{3}+\dfrac{4}{3}-\dfrac{5}{3}\right)\)
\(A=-4-\dfrac{3+5-7}{4}+\dfrac{1+4-5}{3}\)
\(A=-4-\dfrac{1}{4}+\dfrac{0}{3}\)
\(A=-\dfrac{16}{4}-\dfrac{1}{4}+0\)
\(A=\dfrac{-16-1}{4}\)
\(A=-\dfrac{17}{4}\)
Bài 2:
\(\dfrac{1}{3}\cdot-\dfrac{4}{5}+\dfrac{1}{3}\cdot-\dfrac{6}{5}\)
\(=\dfrac{1}{3}\cdot\left(-\dfrac{4}{5}-\dfrac{6}{5}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{-4-6}{5}\)
\(=\dfrac{1}{3}\cdot\dfrac{-10}{5}\)
\(=\dfrac{1}{3}\cdot-2\)
\(=-\dfrac{2}{3}\)
\(A=\)\(1+5+5^2+5^3+...+5^{1998}\)
\(5A=5+5^2+5^3+5^4+...+5^{1999}\)
\(5A-A=\left(5+5^2+5^3+5^4+...+5^{1999}\right)-\left(1+5+5^2+5^3+...+5^{1998}\right)\)
\(4A=5^{1999}-1\)
\(\Rightarrow A=\frac{5^{1999}-1}{4}\)
\(B=4+4^2+4^3+...+4^n\)
\(4B=4^2+4^3+4^4+...+4^{n+1}\)
\(4B-B=\left(4^2+4^3+4^4+...+4^{n+1}\right)-\left(4+4^2+4^3+...+4^n\right)\)
\(3B=4^{n+1}-4\)
\(\Rightarrow B=\frac{4^{n+1}-4}{3}\)
thucs the