Tìm các số a,b,c biết a/4=b/5=c/2 và a+b-c=21
Cần gấp ak
Cảm ơn trước:>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}=\frac{a+b-c}{4+5-2}=\frac{21}{7}=3\)
+) \(\frac{a}{4}=3\Rightarrow a=12\)
+) \(\frac{b}{5}=3\Rightarrow b=15\)
+) \(\frac{c}{2}=3\Rightarrow c=6\)
Vậy a = 12, b = 15 và c = 6
_Chúc bạn học tốt_
Ta có :
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}\) và \(a+b-c=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}=\frac{a+b-c}{4+5-2}=\frac{21}{7}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{4}=3\\\frac{b}{5}=3\\\frac{c}{2}=3\end{cases}\Rightarrow\hept{\begin{cases}a=3.4=12\\b=3.5=15\\c=3.2=6\end{cases}}}\)
Vậy \(a=12;b=15;c=6\)
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)và a-b+c=-49
\(\Rightarrow\frac{a.1}{2.5}=\frac{b.1}{3.5}\Rightarrow\frac{a}{10}=\frac{b}{15}\)(1)
\(\Rightarrow\frac{b.1}{5.3}=\frac{c.1}{4.3}\Rightarrow\frac{b}{15}=\frac{c}{12}\)(2)
Từ (1) và (2)\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)và a-b+c=-49
Áp dụng tính chất của dãy tỉ số bằng nhau:
Ta được:\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a+b+c}{10-15+12}=\frac{-49}{7}=-7\)
Vì \(\frac{a}{10}=-7\Rightarrow a=-7.10=-70\)
\(\frac{b}{15}=-7\Rightarrow b=-7.15=-105\)
\(\frac{c}{12}=-7\Rightarrow c=-7.12=-84\)
Vậy a=-70
b=-105
c=-84
\(\frac{a}{2}=\frac{b}{3}\) => \(\frac{a}{10}=\frac{b}{15}\)
\(\frac{b}{5}=\frac{c}{4}\) => \(\frac{b}{15}=\frac{c}{12}\)
=> \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a}{10}=-7\) => a = -70
\(\frac{b}{15}=-7\)=> b = -105
\(\frac{c}{12}=-7\) => c = -84
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
Bài 1 :
a)
Ta có: 87ab ⋮ 9 ⇔ (8 + 7 + a + b) ⁝⋮ 9 ⇔ (15 + a + b) ⋮ 9
Suy ra: (a + b) ∈ {3; 12}
Vì a – b = 4 nên a + b > 3. Suy ra a + b = 12
Thay a = 4 + b vào a + b = 12, ta có:
b + (4 + b) = 12 ⇔ 2b = 12 – 4
⇔ 2b = 8 ⇔ b = 4
a = 4 + b = 4 + 4 = 8
Vậy ta có số: 8784.
b)
⇒ (7+a+5+b+1) chia hết cho 3
⇔ (13+a+b) chia hết cho 3
+ Vì a, b là chữ số, mà a-b=4
⇒ a,b ∈ (9;5) (8;4) (7;3) (6;2) (5;1) (4;0).
Thay vào biểu thức 7a5b1, ta được :
ĐA 1: a=9; b=5.
ĐA 2: a=6; b=2.
Bài 2 :
Giả sử \(a\ge b\ge c\)
\(P=a+b+c=\left(a-5\right)+\left(b-4\right)+\left(c-3\right)+12\)
\(=\sqrt{\left(a-5\right)^2}+\sqrt{\left(b-4\right)^2}+\sqrt{\left(c-3\right)^2}+12\)
\(\ge\sqrt{\left(a-5\right)^2+\left(b-4\right)^2+\left(c-3\right)^2}+12\)
\(\ge12\)
ĐTXR \(\Leftrightarrow a=5;b=4;c=3\)
Vậy \(min_P=12\Leftrightarrow\left(a;b;c\right)=\left(5;4;3\right)\) hoặc các hoán vị
a/4=b/5=c/2
AD t/c dãy các tỉ số bằng nhau,ta có:
a/4=b/5=c/2=a+b-c/4+5-2=21/7=3
a/4=3 nên a=12
b/5=3 nên b=15
c/2=3 nên c=6
Vậy.................
----------------------.hok tốt--------------------
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}=\frac{a+b-c}{4+5-2}=\frac{21}{7}=3\)
suy ra: \(\frac{a}{4}=3\)\(\Rightarrow\)\(a=12\)
\(\frac{b}{5}=3\)\(\Rightarrow\)\(b=15\)
\(\frac{c}{2}=3\)\(\Rightarrow\)\(c=6\)
Vậy...