K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

a/4=b/5=c/2

AD t/c dãy các tỉ số bằng nhau,ta có:

a/4=b/5=c/2=a+b-c/4+5-2=21/7=3

a/4=3 nên a=12

b/5=3 nên b=15

c/2=3 nên c=6

Vậy.................

----------------------.hok tốt--------------------

11 tháng 7 2018

\(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

    \(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}=\frac{a+b-c}{4+5-2}=\frac{21}{7}=3\)

suy ra:  \(\frac{a}{4}=3\)\(\Rightarrow\)\(a=12\)

             \(\frac{b}{5}=3\)\(\Rightarrow\)\(b=15\)

            \(\frac{c}{2}=3\)\(\Rightarrow\)\(c=6\)

Vậy...

              

12 tháng 7 2018

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}=\frac{a+b-c}{4+5-2}=\frac{21}{7}=3\)

+) \(\frac{a}{4}=3\Rightarrow a=12\)

+) \(\frac{b}{5}=3\Rightarrow b=15\)

+) \(\frac{c}{2}=3\Rightarrow c=6\)

Vậy a = 12, b = 15 và c = 6

_Chúc bạn học tốt_

11 tháng 7 2018

Ta có : 

\(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}\) và \(a+b-c=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 

\(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}=\frac{a+b-c}{4+5-2}=\frac{21}{7}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{4}=3\\\frac{b}{5}=3\\\frac{c}{2}=3\end{cases}\Rightarrow\hept{\begin{cases}a=3.4=12\\b=3.5=15\\c=3.2=6\end{cases}}}\)

Vậy \(a=12;b=15;c=6\)

\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)và a-b+c=-49

\(\Rightarrow\frac{a.1}{2.5}=\frac{b.1}{3.5}\Rightarrow\frac{a}{10}=\frac{b}{15}\)(1)

\(\Rightarrow\frac{b.1}{5.3}=\frac{c.1}{4.3}\Rightarrow\frac{b}{15}=\frac{c}{12}\)(2)

Từ (1) và (2)\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)và a-b+c=-49

Áp dụng tính chất của dãy tỉ số bằng nhau:

Ta được:\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a+b+c}{10-15+12}=\frac{-49}{7}=-7\)

Vì \(\frac{a}{10}=-7\Rightarrow a=-7.10=-70\)

    \(\frac{b}{15}=-7\Rightarrow b=-7.15=-105\)

    \(\frac{c}{12}=-7\Rightarrow c=-7.12=-84\)

Vậy a=-70

       b=-105

       c=-84

30 tháng 9 2015

\(\frac{a}{2}=\frac{b}{3}\) => \(\frac{a}{10}=\frac{b}{15}\)

\(\frac{b}{5}=\frac{c}{4}\) => \(\frac{b}{15}=\frac{c}{12}\)

=> \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{a}{10}=-7\) => a = -70

     \(\frac{b}{15}=-7\)=> b = -105

     \(\frac{c}{12}=-7\) => c = -84

17 tháng 8 2016

2.Giải:

Theo bài ra ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42

Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)

+) \(\frac{a}{2}=-3\Rightarrow a=-6\)

+) \(\frac{b}{3}=-3\Rightarrow b=-9\)

+) \(\frac{c}{4}=-3\Rightarrow c=-12\)

+) \(\frac{d}{5}=-3\Rightarrow d=-15\)

Vậy a = -6

        b = -9

        c = -12

        d = -15

17 tháng 8 2016

Bài 3:

Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\)\(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)

\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

Áp dụng tc dãy tỉ:

\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)

Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)

Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)

Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)

 

TL

t i k cho mik đi mik làm cho bài này mik làm rồi

HOk tốt

1 tháng 12 2021

Bài 1 :

a) 

Ta có: 87ab ⋮ 9 ⇔ (8 + 7 + a + b) ⁝⋮ 9 ⇔ (15 + a + b) ⋮ 9

Suy ra: (a + b) ∈ {3; 12}

Vì a – b = 4 nên a + b > 3. Suy ra a + b = 12

Thay a = 4 + b vào a + b = 12, ta có:

b + (4 + b) = 12 ⇔ 2b = 12 – 4

⇔ 2b = 8 ⇔ b = 4

a = 4 + b = 4 + 4 = 8

Vậy ta có số: 8784.

b) 

⇒ (7+a+5+b+1) chia hết cho 3

⇔ (13+a+b) chia hết cho 3

+ Vì a, b là chữ số, mà a-b=4

⇒ a,b ∈ (9;5) (8;4) (7;3) (6;2) (5;1) (4;0).

Thay vào biểu thức 7a5b1, ta được :

ĐA 1: a=9; b=5.

ĐA 2: a=6; b=2.

Bài 2 :

21 tháng 5 2023

Giả sử \(a\ge b\ge c\)

\(P=a+b+c=\left(a-5\right)+\left(b-4\right)+\left(c-3\right)+12\) 

\(=\sqrt{\left(a-5\right)^2}+\sqrt{\left(b-4\right)^2}+\sqrt{\left(c-3\right)^2}+12\) 

\(\ge\sqrt{\left(a-5\right)^2+\left(b-4\right)^2+\left(c-3\right)^2}+12\)

\(\ge12\)

ĐTXR \(\Leftrightarrow a=5;b=4;c=3\)

 

21 tháng 5 2023

Vậy \(min_P=12\Leftrightarrow\left(a;b;c\right)=\left(5;4;3\right)\) hoặc các hoán vị