Cho trước một số điểm. Cứ qua hai điểm vẽ một đoạn thẳng. Biết rằng có 55 đoạn thẳng. Hỏi có bao nhiêu điểm cho trước?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số điểm cho trước là n (n ∈ N*)
Vẽ từ 1 điểm bất kì với n – 1 điểm còn lại, ta được n – 1 đoạn thẳng.
Với n điểm, nên có n(n – 1) (đoạn thẳng). Nhưng mỗi đoạn thẳng đã được tính 2 lần. Do đó số đoạn thẳng thực sự có là: n(n – 1) : 2 (đoạn thẳng)
Theo đề bài ta có:
n(n – 1) : 2 = 55
n(n – 1) = 55 . 2
n(n – 1) = 110
n(n – 1) = 11 . 10
n = 11
Vậy có 11 điểm cho trước
Gọi số điểm cho trước là n (n ∈ N*)
Vẽ từ 1 điểm bất kì với n – 1 điểm còn lại, ta được n – 1 đoạn thẳng.
Với n điểm, nên có n(n – 1) (đoạn thẳng). Nhưng mỗi đoạn thẳng đã được tính 2 lần. Do đó số đoạn thẳng thực sự có là: n(n – 1) : 2 (đoạn thẳng)
Theo đề bài ta có:
n(n – 1) : 2 = 55
n(n – 1) = 55 . 2
n(n – 1) = 110
n(n – 1) = 11 . 10
n = 11
Vậy có 11 điểm cho trước
Gọi số điểm cho trước là n (n ∈ N*)
Vẽ từ 1 điểm bất kì với n – 1 điểm còn lại, ta được n – 1 đoạn thẳng.
Với n điểm, nên có n(n – 1) (đoạn thẳng). Nhưng mỗi đoạn thẳng đã được tính 2 lần. Do đó số đoạn thẳng thực sự có là: n(n – 1) : 2 (đoạn thẳng)
Theo đề bài ta có:
n(n – 1) : 2 = 55
n(n – 1) = 55 . 2
n(n – 1) = 110
n(n – 1) = 11 . 10
n = 11
Vậy có 11 điểm cho trước
Gọi số điểm cho trước là n ( n > 0 )
Nối 1 điểm bất kì với n - 1 điểm còn lại, ta được n - 1 đường thẳng
\(\Rightarrow\)Số đường thẳng là: n(n-1) ( đoạn thẳng )
Mà mỗi đoạn thẳng lặp lại 2 lần
\(\Rightarrow\)Ta có:
\(\frac{n\left(n-1\right)}{2}=55\)
\(\Rightarrow n\left(n-1\right)=110\)
\(\Rightarrow n\left(n-1\right)=11.10\)
Vậy có 11 điểm cho trước
Gọi số điểm cho trước là x(điểm)
(Điều kiện: \(x\in Z^+\))
Số đoạn thẳng vẽ được khi cho x điểm là:
\(\dfrac{x\left(x-1\right)}{2}\)
Theo đề, ta có: \(\dfrac{x\left(x-1\right)}{2}=190\)
=>\(x\left(x-1\right)=380\)
=>\(x^2-x-380=0\)
=>(x-20)(x+19)=0
=>\(\left[{}\begin{matrix}x-20=0\\x+19=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=20\left(nhận\right)\\x=-19\left(loại\right)\end{matrix}\right.\)
Vậy: Có 20 điểm cho trước
Gọi số điểm cần tìm là n .
Khi đó, từ điểm thứ nhất ta kẻ đc n−1 đường thẳng
Điểm thứ hai kẻ đc n−2 đường thẳng (do đã kẻ 1 đường thẳng với điểm thứ nhất)
Điểm thứ ba kẻ đc n−3 đường thẳng
...
Điểm thứ n−1 kẻ đc 1 đường thẳng.
Do đó tổng số đường thẳng là
1+2+⋯+(n−1)=55
Ta lại có
\(1+2+...+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)
Suy ra \(\frac{n\left(n-1\right)}{2}=55\)
\(\Leftrightarrow n\left(n-1\right)=110\)
\(\Leftrightarrow n\left(n-1\right)=11.10\)
Do n là số nguyên nên ta suy ra n=11 .
Vậy có 11 điểm.