K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

A B C 15cm 16cm H

Áp dụng hệ thức lượng trong tam giác vuông ABC có:

AC2 = CH.BC = 16.BC

AB2 + AC2 = BC2

⇔ 152 + 16.BC = BC2

⇔ BC2 - 16.BC - 225 = 0

⇔ BC2 - 25BC + 9BC - 225 = 0

⇔ BC(BC - 25) + 9(BC - 25) = 0

⇔ (BC - 25)(BC + 9) = 0

⇔ BC = 25 hoặc BC = -9 (loại)

=> AC2 = 16.BC = 16.25 = 400

=> AC = 20

+ Xét tam giác vuông ABC có: AH.BC = AB.AC (hệ thức lượng)

Vậy BC = 25 (cm); AC = 20 (cm); AH = 12 (cm)

AB^2=BH*BC

=>BH(BH+16)=225

=>BH^2+16HB-225=0

=>BH=9cm

BC=9+16=25cm

AH=căn 16*9=12cm

AC=căn 16*25=20cm

14 tháng 9 2018

Đặt BC=x \(\Rightarrow\)BH=x-16

\(\Rightarrow\)AB2=x(x-16) \(\Leftrightarrow\)152=x(x-16) \(\Leftrightarrow\)x=25

\(\Rightarrow\)BC=25(cm),BH=25-16=9(cm)

AC=\(\sqrt{BC^2-AB^2}\)=20(cm)

AH=\(\sqrt{BH.HC}\)=12(cm

16 tháng 7 2021

nhờ các bạn giải giúp hộ mình vs ạ mình cần gấp

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Ta có: BH-HC=5(gt)

mà BH+CH=15

nên 2BH=20

hay BH=10

Suy ra: HC=5

\(\Leftrightarrow AH=\sqrt{10\cdot5}=5\sqrt{2}\left(cm\right)\)

\(\Leftrightarrow AB=\sqrt{\left(5\sqrt{2}\right)^2+10^2}=5\sqrt{6}\left(cm\right)\)

\(\Leftrightarrow AC=\sqrt{15^2-150}=5\sqrt{3}\left(cm\right)\)

Ta có: \(AB^2=HB\cdot HC\)

\(\Leftrightarrow HB\left(HB+16\right)=225\)

\(\Leftrightarrow HB^2+16HB-225=0\)

\(\Leftrightarrow HB=9\left(cm\right)\)

\(\Leftrightarrow AC=\sqrt{HC\cdot BC}=\sqrt{16\cdot25}=20\left(cm\right)\)

\(\Leftrightarrow AH=12\left(cm\right)\)