tìm phần nguyên của S= 1/ (căn 1 + căn 2) + 1/ (căn 3 + căn 4) +....+ 1/(căn 2011 + căn 2012)
giúp mik nha mik cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đk: \(x\ge2\)
Ta có: \(\sqrt{x}+\sqrt{x-2}=2\sqrt{x-1}\) (đã sửa đề)
\(\Leftrightarrow x+2\sqrt{x\left(x-2\right)}=4\left(x-1\right)\)
\(\Leftrightarrow3x-4=2\sqrt{x^2-2x}\)
\(\Leftrightarrow9x^2-24x+16=4\left(x^2-2x\right)\)
\(\Leftrightarrow5x^2-16x+16=0\)
\(\Leftrightarrow5\left(x^2-\frac{16}{5}x+\frac{64}{25}\right)+\frac{16}{5}=0\)
\(\Leftrightarrow5\left(x-\frac{8}{5}\right)^2=-\frac{16}{5}\) vô lý
=> PT vô nghiệm
b) Đề chắc là: \(x^2+x+12=\sqrt{36}\)
\(\Leftrightarrow x^2+x+12-6=0\)
\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)+\frac{23}{4}=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=-\frac{23}{4}\) vô lý
=> PT vô nghiệm
m: \(=\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{2+\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{1}-2-\sqrt{3}\)
\(=\sqrt{3}+2-\sqrt{2}-2-\sqrt{3}=-\sqrt{2}\)
\(\sqrt{x+4\sqrt{x-1}+3}-\sqrt{4x+4\sqrt{x-1}-3}=1\)(đk:\(1\le x< 2\)) Lý do có điều kiện này là nhờ vào việc VT=1>0
\(\Leftrightarrow\sqrt{\left(x-1\right)+4\sqrt{x-1}+4}-\sqrt{4\left(x-1\right)+4\sqrt{x-1}+1}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+2\right)^2}-\sqrt{\left(2\sqrt{x-1}+1\right)^2}=1\)
\(\Leftrightarrow\left(\sqrt{x-1}+2\right)-\left(2\sqrt{x-1}+1\right)=1\)
\(\Leftrightarrow\sqrt{x-1}=0\)
\(\Leftrightarrow x=1\)(thõa mãn điều kiện)
Ta có : \(\sqrt{x+4\sqrt{x-1}+3}-\sqrt{4x+4\sqrt{x-1}-3}=1\) ( ĐK : \(x\ge1\) )
\(\Leftrightarrow\sqrt{\left(x-1\right)+4\sqrt{x-1}+4}-\sqrt{4.\left(x-1\right)+4.\sqrt{x-1}+1}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+2\right)^2}-\sqrt{\left(2\sqrt{x-1}+1\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}+2\right|-\left|2\sqrt{x-1}+1\right|=1\)
\(\Leftrightarrow\sqrt{x-1}+2-2\sqrt{x-1}-1=1\)
\(\Leftrightarrow\sqrt{x-1}=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\) ( Thỏa mãn )
a: Ta có: \(4\sqrt{3a}-3\sqrt{12a}+\dfrac{6\sqrt{a}}{3}-2\sqrt{20a}\)
\(=4\sqrt{3a}-6\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)
\(=-2\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)