tính giá trị cuả biểu thức \(P=\frac{\sqrt{x^3+x^2+5x+3}-6}{\sqrt{x^3-2x^2}-7x+3}\)tại \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
minh ghi nhầm, dấu căn dưới mẫu là bao trùm luôn -7x+3 nhen
\(x=1+\sqrt[3]{2}+\sqrt[3]{4}=\frac{1}{\sqrt[3]{2}-1}.\)
\(\Rightarrow\sqrt[3]{2}x=x+1\)
\(\Rightarrow x^3-3x^2-3x-1=0\)
\(\Rightarrow\hept{\begin{cases}x^3+x^2+5x+3=4\left(x+1\right)^2\\x^3-2x^2-7x+3=\left(x-2\right)^2\end{cases}}\)
Khi đó:
\(P=\frac{2\left(x+1\right)-6}{x-2}=2\)(do x>0)
\(x-1=\sqrt[3]{4}+\sqrt[3]{2}\)
\(\Rightarrow x^3-3x^2+3x-1=6+3\sqrt[3]{8}\left(\sqrt[3]{2}+\sqrt[3]{4}\right)\)
\(\Rightarrow x^3-3x^2+3x-1=6+6\left(x-1\right)\)
\(\Rightarrow x^3-3x^2-3x-1=0\)
\(\Rightarrow x^3=3x^2+3x+1\)
\(P=\frac{\sqrt{3x^2+3x+1+x^2+5x+3}-6}{\sqrt{3x^2+3x+1-2x^2-7x+3}}=\frac{\sqrt{4\left(x+1\right)^2}-6}{\sqrt{\left(x-2\right)^2}}\)
\(=\frac{2x-4}{x-2}=2\)
@Vũ Minh Tuấn @Nguyễn Việt Lâm @Lê Thị Thục Hiền
ĐK: \(x-9\ne0\Rightarrow x\ne9\)
\(\sqrt{x}\ge0\Rightarrow x\ge0\)
\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)
\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)
ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)
\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)
2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)
\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)
\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)
mình ghi nhầm, dấu căn dưới mẫu là bao trùm luôn -7x+3 nhen
Bấm máy
Thí dụ ra 2, chứng minh tử=2.mẫu là xong