chứng minh bt luôn âm
a) 2+ 4x - x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A=-2(x^2-5/2x+2)
=-2(x^2-2*x*5/4+25/16+7/16)
=-2(x-5/4)^2-7/8<=-7/8<0 với mọi x
b: B=x^2+5x+25/4+3/4
=(x+5/2)^2+3/4>=3/4>0
=>B luôn dương với mọi x
c: C=x^2-20x+100+1
=(x-10)^2+1>=1>0 với mọi x
=>C luôn dương với mọi x
a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)
\(=3x^2-4x-26-4x^2+16\)
\(=-x^2-4x-10\)
Ptr có:`\Delta=(-m)^2-4(m-3)=m^2-4m+12=(m-2)^2+8 > 0 AA m`
`=>` Ptr luôn có nghiệm `AA m`
`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=m),(x_1.x_2=c/a=m-3):}`
Ta có:`A=2(x_1 ^2+x_2 ^2)-x_1.x_2`
`<=>A=2[(x_1+x_2)^2-2x_1.x_2]-x_1.x_2`
`<=>A=2[m^2-2(m-3)]-(m-3)`
`<=>A=2(m^2-2m+6)-m+3`
`<=>A=2m^2-4m+12-m+3=2m^2-5m+15`
`<=>A=2(m^2-5/2+15/2)`
`<=>A=2[(m-5/4)^2+95/16]`
`<=>A=2(m-5/4)^2+95/8`
Vì `2(m-5/4)^2 >= 0 AA m<=>2(m-5/4)^2+95/8 >= 95/8 AA m`
Hay `A >= 95/8 AA m`
Dấu "`=`" xảy ra`<=>(m-5/4)^2=0<=>m=5/4`
Vậy `GTN N` của `A` là `95/8` khi `m=5/4`
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
y′ = 3 x 2 − 2(m + 4)x – 4
∆ ′ = m + 4 2 + 12
Vì ∆ ’ > 0 với mọi m nên y’ = 0 luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó). Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.
Xét phương trình :
\(x^2-4x-m^2+6m-5=0\)
\(\left(a=1;b=-4;c=-m^2+6m-5\right)\)
\(b'=-2\)
Ta có :
\(\Delta'=b'^2-ac\)
\(=\left(-2\right)^2-1.\left(-m^2+6m-5\right)\)
\(=4+m^2-6m+5\)
\(=m^2-6m+9\)
\(=\left(m-3\right)^2\ge0\)
\(\Leftrightarrow\) Phương trình luôn có nghiệm với mọi m
Theo định lý Viet ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=-4\\x_1.x_2=\frac{c}{a}=-m^2+6m-5\end{matrix}\right.\)
Ta có :
\(P=x_1^3+x_2^3\)
\(=\left(x_1+x_2\right)\left(x_1^2-x_1.x_2+x_2^2\right)\)
\(=\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1.x_2\right]\)
\(=\left(-4\right)^2\left[\left(-4\right)^2-3\left(-m^2+6m-5\right)\right]\)
\(=16\left[16+3m^2-18m+15\right]\)
\(=16\left(3m^2-18m+31\right)\)
\(=16.3\left(m^2-6m+9\right)+4\)
\(=48\left(m-3\right)^2+4\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow m=3\)
Vậy...
biểu thức nay ko phải luôn âm với mọi x