So sánh (-1/16)100 và (-1/2)500
(-32)9 và (-18)13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\left(-\frac{1}{2}\right)^{500}=\left[\left(-\frac{1}{2}\right)^5\right]^{100}=\left(-\frac{1}{32}\right)^{100}\)
=> \(\left(-\frac{1}{16}\right)^{100}< \left(-\frac{1}{32}\right)^{100}\)
<=> \(\left(-\frac{1}{16}\right)^{100}< \left(-\frac{1}{2}\right)^{500}\)
câu b cũng tương tự nha tất cả đưa về cơ số là -2
a) Chỉ cần so sánh \(\left(\frac{1}{16}\right)^{100}\)và \(\left(\frac{1}{2}\right)^{500}\)
Cách 1 : \(\left(\frac{1}{16}\right)^{100}\)= \(\left(\frac{1}{2}\right)^{400}>\left(\frac{1}{2}\right)^{500}\)
Cách 2 : \(\left(\frac{1}{16}\right)^{100}>\left(\frac{1}{32}\right)^{100}=\left(\frac{1}{2}\right)^{500}\)
b) Trước hết ta so sánh : 329 và 1813
Ta có : 329 < 245 < 252 = 1613 < 1813
Vậy -329 > -1813 tức là ( -32)9 > ( -18)13
a) \(49^{12}\)và \(5^{40}\)
\(49^{12}=\left(49^3\right)^4=\left(\left(7^2\right)^3\right)^4=\left(7^6\right)^4\)
\(5^{40}=\left(5^{10}\right)^4\)
\(7^6=\left(7^3\right)^2>\left(5^5\right)^2\)vì \(7^2\cdot7>5^3\cdot5^2\)
\(\Rightarrow49^{12}< 5^{40}\)
\(\left(-\frac{1}{16}\right)^{100}=\left(-\left(\frac{-1}{2}\right)^4\right)^{100}\)
\(=\left(-\frac{1}{2}\right)^{400}< \left(-\frac{1}{2}\right)^{500}\)
\(\left(-32\right)^9=-\left(2^5\right)^9=-\left(2^{45}\right)\)
\(\left(-16\right)^{13}=-\left(2^4\right)^{13}=-\left(2^{52}\right)\)
vì -2^45>-2^52hay -16^13>-32^9
\(\text{a) }\left(-\frac{1}{16}\right)^{100}=\frac{\left(-1\right)^{100}}{16^{100}}=\frac{1}{16^{100}}\)
\(\left(-\frac{1}{2}\right)^{500}=\frac{\left(-1\right)^{500}}{2^{500}}=\frac{1}{\left(2^5\right)^{100}}=\frac{1}{32^{100}}\)
Ta co
\(16^{100}< 32^{100}\)
\(\Rightarrow\frac{1}{16^{100}}>\frac{1}{32^{100}}\)
\(\Rightarrow\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{2}\right)^{500}\)
a.
Ta có:
\(\left(-\frac{1}{16}\right)^{100}=\frac{\left(-1\right)^{100}}{16^{100}}=\frac{1}{16^{100}}\)
\(\left(-\frac{1}{2}\right)^{500}=\frac{\left(-1\right)^{500}}{2^{500}}=\frac{1}{\left(2^5\right)^{100}}=\frac{1}{32^{100}}\)
Vì \(\frac{1}{16^{100}}>\frac{1}{32^{100}}\Rightarrow\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{2}\right)^{500}\)
b.
Ta có:
\(\left(-32\right)^9=\left[-\left(2^5\right)\right]^9=-\left(2^{45}\right)\)
\(\left(-16\right)^{13}=\left[-\left(2^4\right)\right]^{13}=-\left(2^{52}\right)\)
Vì \(-\left(2^{45}\right)>-\left(2^{52}\right)\Rightarrow\left(-32\right)^9>\left(-16\right)^{13}\)
#Chúc bạn học tốt!#
Toán 6 ?
Ta có :
\(\left(-\frac{1}{16}\right)^{100}=\left(\frac{1}{16}\right)^{100}=\frac{1}{16^{100}}\)
\(\left(-\frac{1}{2}\right)^{500}=\left(\frac{1}{2}\right)^{500}=\frac{1}{2^{500}}=\frac{1}{\left(2^4\right)^{125}}=\frac{1}{16^{125}}\)
Do \(\frac{1}{16^{100}}>\frac{1}{16^{125}}\left(16^{100}< 16^{125}\right)\)
\(\Rightarrow\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{.2}\right)^{500}\)
Vậy ...
a) \(\left(-\frac{1}{2}\right)^{500}=\left[\left(-\frac{1}{2}^5\right)^{100}\right]=\left(\frac{-1}{32}\right)^{100}\)
Vì \(\left(-\frac{1}{16}\right)^{100}\) > \(\left(\frac{-1}{32}\right)^{100}\) nên \(\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{2}\right)^{500}\)
b) Câu này mk ko bt
Bạn thông cảm