Tìm 2 chữ số tận cùng của số 312^209
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Dễ thấy 31 có chữ số tận cùng là 1, nên theo tính chất 1 thì 31 2 có chữ số tận cùng là 1.
Vậy 31 2 có chữ số tận cùng là 1
b, Ta có: 9 = 4.2 + 1
Suy ra: 582 9 = 582 4 . 2 + 1 = 582 4 . 2 . 582 .
Do 582 có chữ số tận cùng là 2, theo tính chất 4 thì 582 4 . 2 sẽ có chữ số tận cùng là 6 nên 582 9 = 582 4 . 2 . 582 có chữ số tận cùng là 2.
Vậy 582 9 có chữ số tận cùng là 2
c, Ta có : 2018 = 4.504+2.
Suy ra : 2 2018 = 2 4 . 504 + 2 = 2 4 . 504 . 2 2 = 2 4 . 504 . 4
Theo tính chất 4 thì 2 4 . 504 có chữ số tận cùng là 6 nên 2 2018 = 2 4 . 504 . 4 có chữ số tận cùng là 4.
Vậy 2 2018 có chữ số tận cùng là 4
d, Ta có : 1999 = 4.499+3.
Suy ra : 7 1999 = 7 4 . 499 + 3 .
Theo tính chất 7 thì 7 1999 = 7 4 . 499 + 3 sẽ có chữ số tận cùng là 3
Vậy 7 1999 có chữ số tận cùng là 3
312419 = 312416+3 = 3124.104+3 = ( 3124 )104 . 3123 = ( ...6 )104 . ( ...8 ) = ( ...6 ) . ( ...8 ) = ( ... 8 )
tính tổng các dãy sau :
A = 1 + 2 + 22+…+ 2100
B = 3 – 32 + 33 – … – 3100
Bài giải:
A = 1 + 2 + 22 + …+ 2 100
Nhân a = 2 cho hai vế :
2A = 2 + 22 + 23 + …+ 2101
tính : 2A – A = (2 + 22 + 23 + …+ 2101 ) – (1 +2 + 22+ …+2100)
Vậy A = 2101 – 1
B = 3 – 32 + 33 – … – 3100
Nhân a = 3 cho hai vế : 3B = 32 – 33 + 34 – … – 3101
Tín : B + 3B = (3 – 33 + 33) – …- 3100) + ( 32 – 23 +34 – … – 3101)
4B = 3 – 3101
Vậy B = ( 3- 3101) : 4
Ta có:3312=(34)78
=8178
=............1 vì số có tận cùng là 1 mũ mấy cũng tận cùng là 1
Vậy chữ số tận cùng của:3312 là:1
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
312209 = 312208. 312 = (...6) . 312 = ...12
Vậy 2 chữ số tận cùng của số 312209 là 12
Có j ko hiểu thì hỏi lại nhá
Thanh you !