\(1/ Cho P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+\frac{4}{5^5}+...+\frac{11}{5^{12}}.\) Chứng minh rằng \(P<\frac{1}{16}\)
\(2/ \) \(Cho\) \(A=2009^{2010}+2010^{2010}+2011^{2010}\). Số A có là số chính phương không?
Ai nhanh mk tick nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5A=1/5=2/5^2+......+11/5^11
4A=1/5+1/5^2+......+1/5^11-11/5^12
20A=1+1/5+1/5^2+.....+1/5^10-11/5^11
16A=1-1/5^11+11/5^12-11/5^11
vi 1-1/5^11<1;11/5^12-11/5^11<0
16A<1
A<1/16
k cho minh nhe
Bonking
bn tham khảo đây nhé :
Câu hỏi của Khanh Mai Lê - Toán lớp 6 - Học toán với OnlineMath
mình tính siêu đúng
...
5A=\(\frac{1}{5}+\frac{2}{5^2}...+\frac{n}{5^n}...+\frac{11}{5^{11}}\)
=>4A=5A-A=\(\frac{1}{5}+\frac{1}{5^2}...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)
=>20A=\(1+\frac{1}{5}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)
=>16A=20A-4A=\(1-\frac{1}{5^{11}}+\frac{11}{5^{12}}-\frac{11}{5^{11}}\)
Mà \(1-\frac{1}{5^{11}}< 1\),\(\frac{11}{5^{12}}-\frac{11}{5^{11}}< 0\)
=>16A<1
Do đó: A<1/16(đpcm)
\(\left(\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{11}{5^{12}}\right)\)
=\(\left(\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{11}{5^{12}}\right)\)<\(\frac{1}{4.5}+\frac{2}{4.5.6}+...+\frac{11}{4.5.6...15}\)
=???
Ta có : \(P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}\)
\(\Rightarrow5P=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\)
Lấy 5P trừ P theo vế ta có :
\(5P-P=\left(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}\right)\)
\(\Rightarrow4P=\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}\right)-\frac{11}{5^{12}}\)
Đặt S = \(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}\)
\(\Rightarrow5S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)
Lấy 5S trừ S theo vế ta có :
\(5S-S=\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}\right)\)
4S = \(1-\frac{1}{5^{11}}\)
S \(=\frac{1}{4}-\frac{1}{5^{11}.4}\)
Khi đó : 4P = \(\frac{1}{4}-\frac{1}{5^{11}.4}-\frac{11}{5^{12}}\)
\(\Rightarrow P=\left(\frac{1}{4}-\frac{1}{5^{11}.4}-\frac{11}{5^{12}}\right):4=\frac{1}{16}-\left(\frac{1}{5^{11}.16}+\frac{11}{5^{12}.4}\right)< \frac{1}{16}\)(ĐPCM)
1) \(P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}\)
\(5P=\frac{1}{5^1}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\)
\(5P-P=\frac{1}{5^1}+\left(\frac{2}{5^2}-\frac{1}{5^2}\right)+\left(\frac{3}{5^3}-\frac{2}{5^3}\right)+...+\left(\frac{11}{5^{11}}-\frac{10}{5^{11}}\right)-\frac{11}{5^{12}}\)
\(4P=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)
Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}\)
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)
\(5A-A=1+\frac{1}{5}-\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^2}+...+\frac{1}{5^{10}}-\frac{1}{5^{11}}\)
\(4A=1-\frac{1}{5^{11}}\Rightarrow A=\frac{1-\frac{1}{5^{11}}}{4}\)
\(4P=\frac{1-\frac{1}{5^{11}}}{4}-\frac{11}{5^{12}}=\frac{1-\frac{1}{5^{11}}}{16}-\frac{11}{5^{12}\cdot4}< \frac{1}{16}\)