Cho tam giác ABC vuông tại A có đường cao AH, đường trung tuyến AM. Biết AH=24/5, AM=, tínhAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(HC=\dfrac{3^2}{4}=2.25\left(cm\right)\)
BC=HB+HC=6,25(cm)
AM=BC/2=3,125(cm)
\(AB=\sqrt{4\cdot6.25}=5\left(cm\right)\)
\(AC=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)
+ ) áp dụng định lí Pytago trong tam giác vuông \(ABH\) vuông tại \(H\) , ta có :
\(AB^2=AH^2+HB^2=3^2+4^2=25\Rightarrow AB=5\left(cm\right)\)
+ ) áp dụng hệ thức về cạnh và đường cao trong tam giác vuông \(ABC\) với \(AH\) là đường cao , ta có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}\)
\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\)
\(\Rightarrow AC=\dfrac{15}{4}\left(cm\right)\)
+ ) áp dụng định lí Pytago trong tam giác vuông \(ABC\) vuông tại \(A\) , ta có :
\(BC^2=AB^2+AC^2=5^2+\left(\dfrac{15}{4}\right)^2=\dfrac{625}{16}\)
\(\Rightarrow BC=\dfrac{25}{4}\left(cm\right)\)
+ ) tam giác \(ABC\) vuông tại \(A\) có trung tuyến \(AM\) nên ta có :
\(AM=\dfrac{1}{2}BC=\dfrac{25}{8}\left(cm\right)\)
Xét tam giác ABH vuông tại H, ta có:
\(AB^2=AH^2+BH^2\)\(=3^2+4^2=25\)
\(\Rightarrow AB=5\left(cm\right)\)
Xét tam giác ABC vuông tại A, theo hệ thức lượng ta có:
\(AH^2=AB\cdot AC\Rightarrow AC=\dfrac{AH^2}{AB}=\dfrac{3^2}{5}=1,8\left(cm\right)\)
Do đó:\(BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+1,8^2}\simeq5,3\left(cm\right)\)
AM là đường trung tuyến trong tam giác vuông ABC
=> AM=\(\dfrac{1}{2}\) BC= 2,65 \(\left(cm\right)\)
+) Áp dụng định lý Pytago trong tam giác vuông ABH vuông tại H ta có:
+) Áp dụng hệ thức về cạnh và đường cao trng tam giác vuông ABC với AH là đường cao ta có:
+) Áp dụng định lý Pytago trong tam giác vuông ABC vuông tại A ta có:
+) Tam giác ABC vuông tại A có trung tuyến AM nên ta có:
+) Diện tích tam giác ABC với AH là đường cao ta có:
Vậy AB = 5cm, AC = 15 4 cm; AM = 25 8 cm; S ∆ A B C = 75 8 c m 2 .
Đáp án cần chọn là: A
a, \(\tan B=\dfrac{4}{3}\Leftrightarrow\dfrac{AC}{AB}=\dfrac{4}{3}\Leftrightarrow AC=\dfrac{4}{3}AB\)
Áp dụng PTG: \(AB^2+AC^2=AB^2+\dfrac{16}{9}AB^2=\dfrac{25}{9}AB^2=BC^2=100\)
\(\Leftrightarrow AB^2=36\Leftrightarrow AB=6\left(cm\right)\\ \Leftrightarrow AC=6\cdot\dfrac{4}{3}=8\left(cm\right)\)
\(\tan B=\dfrac{4}{3}\approx\tan53^0\Leftrightarrow\widehat{B}\approx53^0\\ \widehat{C}=90^0-\widehat{B}\approx90^0-53^0=37^0\)
b, Vì AM là trung tuyến ứng ch BC nên \(AM=\dfrac{1}{2}BC=5\left(cm\right)\)
Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{48}{10}=4,8\left(cm\right)\)
a , Δ A B C , A ⏜ = 90 0 , A H ⊥ B C g t ⇒ A H = B H . C H = 4.9 = 6 c m Δ A B H , H ⏜ = 90 0 g t ⇒ tan B = A H B H = 6 4 ⇒ B ⏜ ≈ 56 , 3 0 b , Δ A B C , A ⏜ = 90 0 , M B = M C g t ⇒ A M = 1 2 B C = 1 2 .13 = 6 , 5 c m S Δ A H M = 1 2 M H . A H = 1 2 .2 , 5.6 = 7 , 5 c m 2
Vì `\triangle ABC` vuông tại `A` có `AM` là đường trung tuyến
`=>AM=MC=1/2BC =>BC =40(cm)`
`@` Xét `\triangle ABC` vuông tại `A` có: `AC=\sqrt{BC^2 -AB^2}=32(cm)` (Py-ta-go)
`@` Mặt khác: Ta có `AH` là đường cao
`=>BH=[AB^2]/[BC]` (Ht giữa cạnh và đường cao)
`=>BH =14,4(cm)`
`@` Ta có: `HM =BC-BH-MC=5,6(cm)`