K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

A B C H K I D E

a) Tao có :)  \(\Delta ABC\)cân tại A  \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

T lại có :) \(\widehat{ABC}=\widehat{HBD}\left(đđ\right)\)

              \(\widehat{ACB}=\widehat{KCE}\left(đđ\right)\)

\(\Rightarrow\widehat{HBD}=\widehat{KCE}\)

Xét  \(\Delta HBD\)và \(\Delta KCE\)t có :)

\(\widehat{HBD}=\widehat{KCE}\)

\(BD=CE\)

\(\widehat{DHB}=\widehat{EKC}\left(=90^o\right)\)

\(\Rightarrow\Delta HBD=\Delta KCE\left(ch-gn\right)\)

\(\Rightarrow HB=KC\left(đpcm\right)\)

b) T có :)  \(\widehat{ABH}+\widehat{ABC}=180^o\)( kề bù )

                 \(\widehat{ACK}+\widehat{ACB}=180^o\)( kề bù )

Mà :)  \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{ABH}=\widehat{ACK}\)

Xét  \(\Delta AHB\)và  \(\Delta AKC\)có :)

\(HB=CK\)

\(\widehat{ABH}=\widehat{ACK}\)

\(AB=AC\)

\(\Rightarrow\Delta AHB=\Delta AKC\left(c-g-c\right)\)

\(\Rightarrow\widehat{AHB}=\widehat{AKC}\left(đpcm\right)\)

c) Do  \(\Delta ABC\)cân tại A  \(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\left(1\right)\)

Mà :)  \(AB=AC\)

         \(BD=CE\)

\(\Rightarrow AB+BD=AC+CE\)

\(\Rightarrow AD=AE\)

\(\Rightarrow\Delta ADE\)cân tại A  \(\Rightarrow\widehat{ADE}=\frac{180^o-\widehat{BAC}}{2}\left(2\right)\)

Từ (1) và (2)  \(\Rightarrow\widehat{ABC}=\widehat{ADE}\)

Mà hai góc trên đồng vị :)

\(\Rightarrow HK//DE\left(đpcm\right)\)

d) Theo câu b t có  \(\Delta AHB=\Delta AKC\)

\(\Rightarrow\hept{\begin{cases}AH=AK\\\widehat{HAB}=\widehat{KAC}\end{cases}}\)

\(\Rightarrow\widehat{HAB}+\widehat{BAC}=\widehat{KAC}+\widehat{BAC}\)

\(\Leftrightarrow\widehat{HAC}=\widehat{KAB}\)

Xét  \(\Delta AHE\)và  \(\Delta AKD\)có :)

\(\widehat{HAC}=\widehat{KAB}\)

\(AH=AK\)

\(AE=AD\)

\(\Rightarrow\Delta AHE=\Delta AKD\left(c-g-c\right)\left(đpcm\right)\)

e)  \(\Rightarrow\widehat{AHE}=\widehat{AKD}\)

\(\Leftrightarrow\widehat{AHK}+\widehat{KHE}=\widehat{AKH}+\widehat{HKD}\)

Mà :) \(\widehat{AHK}=\widehat{AKH}\)( câu b )

\(\Rightarrow\widehat{KHE}=\widehat{HKD}\Rightarrow\Delta HIK\)cân tại I

\(\Rightarrow HI=IK\)

Xét  \(\Delta AHI\)và  \(\Delta AKI\)có :)

\(HI=IK\)

\(AH=AK\)

Chung AI

\(\Rightarrow\Delta AHI=\Delta AKI\left(c-c-c\right)\)

\(\Rightarrow\widehat{HAI}=\widehat{KAI}\)

\(\Leftrightarrow\widehat{HAB}+\widehat{BAI}=\widehat{CAI}+\widehat{KAC}\)

Lại có :)  \(\widehat{HAB}=\widehat{KAC}\)

\(\Rightarrow\widehat{BAI}=\widehat{CAI}\)

\(\Rightarrow\)AI là tia phân giác  \(\widehat{BAC}\)hay \(\widehat{DAE}\)

Mà  \(\Delta DAE\)cân tại A

\(\Rightarrow AI\perp DE\)( do đường phân giác của đỉnh tam giác cân cũng chính là đường cao của tam giác cân đó )

Vậy .... :)

7 tháng 7 2018

Hình vẽ :  

a) Dễ nhận thấy DE = KH = 1/2 BC

Do đó KH = 1/2BC suy ra KB + CH = 1/2BC=KH

Vậy KB + CH = KH

Do vậy 2KB + CH = KH + KB (1)

           KB + 2CH = KH + KB (2)

Từ đó suy ra CH = KB

Mà HB = KH + KB (3)

CK = KH + HC (4)

Mà KB = HC nên KH + KB  = KH + HC hay HB = CK

b) Chứng minh \(\Delta AHB=\Delta AKC\)

Ta có: \(\Delta AHB=\Delta AKC\left(c.g.c\right)\)

Suy ra \(\widehat{AHB}=\widehat{AKC}\)

c) Theo hình vẽ ta có BD = CE và BD là tia đối của BA, nên BD thẳng hàng với BA

 CE là tia đối của CA nên CE thẳng hàng với CA

Do đó CE = BD . DO đó EK = DH.

Theo đề bài DH và EK cùng vuông góc BC (5) mà DH = EK do đó \(\widehat{D}=90^o;\widehat{E}=90^o\)(6)

Từ (5) và (6) suy ra HK song song DE

Sau đó tự làm tiếp

a: Xét ΔDBH vuông tại H và ΔECK vuông tại K có

DB=CE

góc DBH=góc ECK

=>ΔDBH=ΔECK

=>HB=CK

b: Xet ΔABH và ΔACK có

AB=AC
góc ABH=góc ACK

BH=CK

=>ΔABH=ΔACK

=>góc AHB=góc AKC

c: Xét ΔADE có AB/BD=AC/CE
nên BC//DE

=>HK//ED

d: Xét ΔAHE và ΔAKD có

AH=AK

HE=KD

AE=AD

=>ΔAHE=ΔAKD

a: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có

BD=CE

\(\widehat{HBD}=\widehat{KCE}\)

Do đó: ΔHBD=ΔKCE

Suy ra: HB=KC

b: Xét ΔAHB và ΔAKC có 

AB=AC

\(\widehat{ABH}=\widehat{ACK}\)

BH=CK

Do đó: ΔAHB=ΔAKC

Suy ra: \(\widehat{AHB}=\widehat{AKC}\)

c: Xét ΔADE có AB/AD=AC/AE

nên BD//ED

hay DE//HK

HB=KC chứ bạn

Ta có  HBD=ABC ( đối đỉnh)

          ACB=KCE

10 tháng 8 2021

Câu a phải là HD= EK mới đúng chứ nhỉ

a: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có

BD=CE

\(\widehat{HBD}=\widehat{KCE}\)

Do đó: ΔHBD=ΔKCE

Suy ra: HB=KC

b: Xét ΔAHB và ΔAKC có

AB=AC

\(\widehat{ABH}=\widehat{ACK}\)

BH=CK

DO đó: ΔAHB=ΔAKC

Suy ra: \(\widehat{AHB}=\widehat{AKC}\)