K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

\(N=x^3+y^3+9xy=\left(x+y\right)^3-3xy\left(x+y\right)+9xy=3^3-3xy.3+9xy=27-9xy+9xy=27\)

6 tháng 7 2018

\(N=x^3+y^3+9xy\)

\(N=\left(x+y\right)^3-3xy\left(x-y\right)+9xy\)

\(N=\left(3^3\right)-3xy.3+9xy\)

\(N=27-9xy+9xy\)

\(N=27\)

Vậy N = 27

\(N=\left(x+y\right)^3-3xy\left(x+y\right)+9xy\)

\(=3^3-3\cdot xy\cdot3+9xy=27\)

9 tháng 7 2017

Đáp án C.

Từ giả thiết ta có

  ln x + y + 1 + 3 x + y + 1 = ln 3 x y + 3.3 x y   (*)

Xét  f t = ln t + 3 t  hàm trên  0 ; + ∞ , ta có  f ' t = 1 t + 3 > , ∀ t > 0

Do đó  * ⇔ x + y + 1 = 3 x y ⇔ 3 x y − 1 = x + y ≥ 2 x y ⇔ 3 xy − 2 x y − 1 ≥ 0

Suy ra  x y ≥ 1 ⇒ x y ≥ 1.

30 tháng 6 2018

x^3+ y^3+ 3xy

=(x+y)(x^2 -xy + y^2 ) + 3xy
=x^2  -xy + y^2 + 3xy

=x^2 + 2xy + y^2

=(x+y)^2 =1

=> x^3+ y^3+ 3xy=1

1 tháng 7 2018

còn câu b ai giúp m vs

10 tháng 3 2021

Bài 1 : 

\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)

hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)

mà \(xyz=2\Rightarrow-xyz=-2\)

hay N nhận giá trị -2 

Bài 2 : 

\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)

hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)

hay biểu thức trên nhận giá trị là 24 

c, Ta có : \(a-b=3\Rightarrow a=3+b\)

hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)

\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi 

10 tháng 3 2021

1.Ta có:\(x+y+z=0\)

\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)

2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)

Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)

Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)

Vậy....

12 tháng 7

13 = (\(x+y\))3 = \(x^3\) + 3\(x^2\)y + 3\(xy^2\) + y3 = \(x^3\)+y3+3\(xy\)(\(x+y\))

1 = \(x^3\)+y3+3\(xy\)

12 tháng 7

13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\)y + 3\(xy\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\))

1 = \(x^3\) - y3 - 3\(xy\)

12 tháng 7

12 tháng 7

b; 13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\).y + 3\(xy^2\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\)

    1 = \(x^3\) - y3 - 3\(xy\)

25 tháng 7 2019

a) \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)

\(=7^3+2\left(x^2+2xy+y^2\right)\)

\(=343+2\left(x+y\right)^2\)

\(=343+2.7^2\)

\(=343+98=441\)

25 tháng 7 2019

b) \(N=\left(x-y\right)^3-x^2+2xy-y^2\)

\(=\left(-5\right)^3-\left(x-y\right)^2\)

\(=-125-\left(-5\right)^2\)

\(=-125-25=-150\)