So sánh
a, \(\sqrt{5}\)+ \(\sqrt{7}\)và \(\sqrt{12}\)
b,\(\sqrt{8}\)+ 3 và 6 + \(\sqrt{2}\)
c, \(\sqrt{13}\)x\(\sqrt{15}\)và 14
d, \(\sqrt{27}\)+ \(\sqrt{6}\)+1 và \(\sqrt{48}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3\sqrt{3}=\sqrt{27}>\sqrt{12}\)
b) \(3\sqrt{5}=\sqrt{45}>\sqrt{27}\)
c) \(\dfrac{1}{3}\sqrt{51}=\sqrt{\dfrac{51}{9}}< \sqrt{\dfrac{54}{9}}=6=\sqrt{\dfrac{150}{25}}=\dfrac{1}{5}\sqrt{150}\)
d) \(\dfrac{1}{2}\sqrt{6}=\sqrt{\dfrac{6}{4}}=\sqrt{\dfrac{3}{2}}< \sqrt{\dfrac{36}{2}}=6\sqrt{\dfrac{1}{2}}\)
a)
Có:
\(2\sqrt{29}=\sqrt{4.29}=\sqrt{116}\\ 3\sqrt{13}=\sqrt{9.13}=\sqrt{117}\)
Vì \(\sqrt{117}>\sqrt{116}\) nên \(3\sqrt{13}>2\sqrt{29}\)
b)
Có:
\(\dfrac{5}{4}\sqrt{2}=\sqrt{\dfrac{25}{16}.2}=\sqrt{\dfrac{25}{8}}\)
\(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}=\sqrt{\dfrac{9}{4}.\dfrac{3}{2}}=\sqrt{\dfrac{27}{8}}\)
Do \(\sqrt{\dfrac{27}{8}}>\sqrt{\dfrac{25}{8}}\) nên \(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}>\dfrac{5}{4}\sqrt{2}\)
c)
Có:
\(5\sqrt{2}=\sqrt{25.2}=\sqrt{50}\)
\(4\sqrt{3}=\sqrt{16.3}=\sqrt{48}\)
Vì \(\sqrt{50}>\sqrt{48}\) nên \(5\sqrt{2}>4\sqrt{3}\)
d)
Có:
\(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}=\sqrt{\dfrac{25}{4}.\dfrac{1}{6}}=\sqrt{\dfrac{25}{24}}\)
\(6\sqrt{\dfrac{1}{37}}=\sqrt{36.\dfrac{1}{37}}=\sqrt{\dfrac{36}{37}}\)
lại có: \(\dfrac{25}{24}>\dfrac{36}{37}\)
\(\Rightarrow\dfrac{5}{2}\sqrt{\dfrac{1}{6}}>6\sqrt{\dfrac{1}{37}}\)
Lời giải:
a.
$\sqrt{8}+\sqrt{15}+1<\sqrt{9}+\sqrt{16}+1=3+4+1=8=\sqrt{64}< \sqrt{65}$
$\Rightarrow \sqrt{8}+\sqrt{15}< \sqrt{65}-1$
b.
$(2\sqrt{3}+6\sqrt{2})^2=84+24\sqrt{6}< 84+24\sqrt{9}< 169$
$\Rightarrow 2\sqrt{3}+6\sqrt{2}< 13$
$\Rightarrow \frac{13-2\sqrt{3}}{6}> \sqrt{2}$
2) \(-x^2+4x-2\)
\(=-\left(x^2-4x+2\right)\)
\(=-\left(x^2-4x+4-2\right)\)
\(=-\left(x-2\right)^2+2\)
Ta có: \(-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2+2\le2\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow-\left(x-2\right)^2+2=2\Leftrightarrow x=2\)
Vậy: GTLN của bt là 2 tại x=2
b) \(\sqrt{2x^2-3}\) (ĐK: \(x\ge\sqrt{\dfrac{3}{2}}\))
Mà: \(\sqrt{2x^2-3}\ge0\forall x\)
Dấu "=" xảy ra:
\(\sqrt{2x^2-3}=0\Leftrightarrow x=\sqrt{\dfrac{3}{2}}=\dfrac{3\sqrt{2}}{2}\)
Vậy GTNN của bt là 0 tại \(x=\dfrac{3\sqrt{2}}{2}\)
...
1:
b: \(4\sqrt{5}=\sqrt{80}\)
\(5\sqrt{3}=\sqrt{75}\)
=>\(4\sqrt{5}>5\sqrt{3}\)
=>\(\sqrt{4\sqrt{5}}>\sqrt{5\sqrt{3}}\)
c: \(3-2\sqrt{5}-1+\sqrt{5}=2-\sqrt{5}< 0\)
=>\(3-2\sqrt{5}< 1-\sqrt{5}\)
d: \(\sqrt{2006}-\sqrt{2005}=\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)
\(\sqrt{2005}-\sqrt{2004}=\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)
\(\sqrt{2006}+\sqrt{2005}>\sqrt{2005}+\sqrt{2004}\)
=>\(\dfrac{1}{\sqrt{2006}+\sqrt{2005}}< \dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)
=>\(\sqrt{2006}-\sqrt{2005}< \sqrt{2005}-\sqrt{2004}\)
e: \(\left(\sqrt{2003}+\sqrt{2005}\right)^2=4008+2\cdot\sqrt{2003\cdot2005}=4008+2\cdot\sqrt{2004^2-1}\)
\(\left(2\sqrt{2004}\right)^2=4\cdot2004=4008+2\cdot\sqrt{2004^2}\)
=>\(\left(\sqrt{2003}+\sqrt{2005}\right)^2< \left(2\sqrt{2004}\right)^2\)
=>\(\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)
a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)
\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)
\(=33\sqrt{3}\cdot\sqrt{3}\)
=99
b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)
\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)
c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+18\sqrt{3}\)
d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)
\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)
a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)
\(=28.3+9.3-4.3=99\)
b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)
\(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)
a) \(2=\sqrt{4}>\sqrt{3}\)
b) \(6=\sqrt{36}< \sqrt{41}\)
c) \(7=\sqrt{49}>\sqrt{47}\)
Câu 1:
a: \(\dfrac{2}{5}\sqrt{75}-0,5\cdot\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\cdot\sqrt{12}\)
\(=\dfrac{2}{5}\cdot5\sqrt{3}-0,5\cdot4\sqrt{3}+10\sqrt{3}-\dfrac{2}{3}\cdot2\sqrt{3}\)
\(=2\sqrt{3}-2\sqrt{3}+10\sqrt{3}-\dfrac{4}{3}\sqrt{3}\)
\(=10\sqrt{3}-\dfrac{4}{3}\sqrt{3}=\dfrac{26}{3}\sqrt{3}\)
b: \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)
\(=\dfrac{\sqrt{3}\cdot3\sqrt{3}-2\sqrt{3}}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3\left(3-\sqrt{6}\right)}{9-6}\)
\(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+3-\sqrt{6}\)
\(=\dfrac{\sqrt{3}}{\sqrt{2}}+3-\sqrt{6}=3-\dfrac{\sqrt{6}}{2}\)
c: \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
=\(\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{24-2\cdot2\sqrt{6}\cdot3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
Bài 2:
a:
b: Phương trình hoành độ giao điểm là:
\(3x+2=-x-4\)
=>4x=-6
=>x=-3/2
Thay x=-3/2 vào y=-x-4, ta được:
\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=-\dfrac{5}{2}\)
Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)
c: Vì (d2)//(d) nên \(\left\{{}\begin{matrix}a=-1\\b\ne-4\end{matrix}\right.\)
Vậy: (d2): y=-x+b
Thay x=-2 và y=5 vào (d2), ta được:
\(b-\left(-2\right)=5\)
=>b+2=5
=>b=5-2=3
Vậy: (d2): y=-x+3
a: \(4\sqrt{7}=\sqrt{4^2\cdot7}=\sqrt{112}\)
\(3\sqrt{13}=\sqrt{3^2\cdot13}=\sqrt{117}\)
mà 112<117
nên \(4\sqrt{7}< 3\sqrt{13}\)
b: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)
\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)
mà 108>64
nên \(3\sqrt{12}>2\sqrt{16}\)
c: \(\dfrac{1}{4}\sqrt{84}=\sqrt{\dfrac{1}{16}\cdot84}=\sqrt{\dfrac{21}{4}}\)
\(6\sqrt{\dfrac{1}{7}}=\sqrt{36\cdot\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)
mà \(\dfrac{21}{4}>\dfrac{36}{7}\)
nên \(\dfrac{1}{4}\sqrt{84}>6\sqrt{\dfrac{1}{7}}\)
d: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)
\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)
mà 108>64
nên \(3\sqrt{12}>2\sqrt{16}\)
Tính ra rồi so sánh
a,\(\sqrt{12}=2\sqrt{3}=\sqrt{3}+\sqrt{3}\)
ta có \(\sqrt{5}>\sqrt{3}\)và\(\sqrt{7}>\sqrt{3}\)=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)