K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{\sqrt{b}}+\sqrt{b}\ge2.\sqrt{\frac{a}{\sqrt{b}}.\sqrt{b}}=2\sqrt{a}\)

Tương tự:\(\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{\frac{b}{\sqrt{a}}.\sqrt{a}}=2\sqrt{b}\)

Cộng theo vế BĐT ta được:\(\frac{a}{\sqrt{b}}+\sqrt{b}+\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\left(\sqrt{a}+\sqrt{b}\right)\)

\(\Rightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)

15 tháng 8 2017

Vì a>0; b>0 nên theo bđt Cauchy ta có :

\(\frac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{\frac{a}{\sqrt{b}}.\sqrt{b}}=2\sqrt{a}\)

\(\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{\frac{b}{\sqrt{a}}.\sqrt{a}}=2\sqrt{a}\)

\(\Rightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}+\sqrt{a}+\sqrt{b}\ge2\sqrt{a}+2\sqrt{b}\)

\(\Rightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)(đpcm)

18 tháng 4 2017

Dùng BĐT Schwarz là xong

26 tháng 8 2017

Áp dụng Cauchy ta có :

\(\frac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{\frac{a}{\sqrt{b}}.\sqrt{b}}=2\sqrt{a}\)(1)

\(\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{\frac{b}{\sqrt{a}}.\sqrt{a}}=2\sqrt{b}\)(2)

Cộng vế của (1) và (2) ta được :

\(\frac{a}{\sqrt{b}}+\sqrt{b}+\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{a}+2\sqrt{b}\)

\(\Leftrightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)

\(\Rightarrow\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\) (đpcm)

10 tháng 7 2019

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

24 tháng 1 2018

bđt cần c/m tương đương với:

\(\left(\frac{b+c}{\sqrt{a}}+\sqrt{a}\right)+\left(\frac{a+c}{\sqrt{b}}+\sqrt{b}\right)+\left(\frac{a+b}{\sqrt{c}}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\\ \ \)\(\left(a+b+c\right)\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)

Mặt khác:

\(a+b+c\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{3}\)

\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\frac{9}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

=> \(VT\ge3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

Ta cần c/m: 

\(3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)

<=> \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge3\sqrt[3]{\sqrt{abc}}=3\)(BĐt Cô-si)

xong rồi bạn nhé

25 tháng 12 2019

dit me may

NV
9 tháng 3 2020

a/ \(VT\ge\frac{\left(\sqrt{b}+\sqrt{c}\right)^2}{2\sqrt{a}}+\frac{\left(\sqrt{c}+\sqrt{a}\right)^2}{2\sqrt{b}}+\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\sqrt{c}}\)

\(VT\ge\frac{\left(\sqrt{b}+\sqrt{c}+\sqrt{c}+\sqrt{a}+\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

\(VT\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{a}+\sqrt{b}+\sqrt{c}\)

\(VT\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{abc}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

b/ \(VT=\sum\frac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\)

\(VT\le\sum\frac{x}{x+\sqrt{xz}+\sqrt{xy}}=\sum\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

Dấu "=" xảy ra khi \(x=y=z=1\)

9 tháng 3 2020

Bài 1 :

Áp dụng BĐT Cô - si cho 2 số không âm ta có :

\(VT=\Sigma_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\Sigma_{cyc}\sqrt{\frac{bc}{a}}\right)\)

\(\Leftrightarrow\Sigma_{cyc}\frac{b+c}{\sqrt{a}}\ge\left(\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)+\left(\sqrt{\frac{ab}{c}}+\sqrt{\frac{bc}{a}}\right)+\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}\right)\)

\(\Leftrightarrow\Sigma_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)

\(+3\sqrt[6]{abc}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

29 tháng 1 2020

Áp dụng BĐT Cô - si cho 2 số không âm, ta có:

\(VT=\text{Σ}_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\text{Σ}_{cyc}\sqrt{\frac{bc}{a}}\right)\)

\(\Leftrightarrow\text{Σ}_{cyc}\frac{b+c}{\sqrt{a}}\ge\left(\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)+\left(\sqrt{\frac{ab}{c}}+\sqrt{\frac{bc}{a}}\right)\)

\(+\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}\right)\)

\(\Leftrightarrow\text{Σ}_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)

\(+3\sqrt[6]{abc}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

(Dấu "="\(\Leftrightarrow a=b=c=1\))

12 tháng 4 2020

\(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\frac{2\sqrt{bc}}{\sqrt{a}}+\frac{2\sqrt{ca}}{\sqrt{b}}+\frac{2\sqrt{ab}}{\sqrt{c}}=2\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)\)

\(=\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}\right)+\left(\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)+\left(\sqrt{\frac{ab}{c}}+\sqrt{\frac{bc}{a}}\right)\)

\(\ge2\sqrt{\sqrt{\frac{bc}{a}}\sqrt{\frac{ca}{b}}}+2\sqrt{\sqrt{\frac{ca}{b}}\sqrt{\frac{ab}{c}}}+2\sqrt{\sqrt{\frac{ab}{c}}\sqrt{\frac{bc}{a}}}\)

\(=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

\(\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{a}\sqrt{b}\sqrt{c}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)