K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

quen nua so sanh nha

5 tháng 7 2018

ta có: D = 1 + 2^2 + 2^3 + ...+2^2004

=> 2D = 2 + 2^3 + 2^4 + ...+2^2005

=> 2D-D = 2^2005 + 2 - 1

D = 2^2005 + 1 > F = 2^2005 - 1

21 tháng 2 2020

Ta có : \(B=4+3^2+3^3+...+3^{2004}\)

\(=1+3+3^2+3^3+...+3^{2004}\)

\(\Rightarrow3B=3+3^2+3^3+3^4+...+3^{2005}\)

\(\Rightarrow3B-B=\left(3+3^2+3^3+...+3^{2005}\right)-\left(1+3+3^2+...+3^{2004}\right)\)

\(\Rightarrow2B=3^{2005}-1\)

\(\Rightarrow B=\frac{3^{2005}-1}{2}< 3^{2005}\)

Hay : \(B< C\)

Vậy : \(B< C\)

21 tháng 2 2020

Hình như sai đề hay sao đấy bạn Nam đáng lẽ 4 thành 3

Sửa lại :

\(B=3+3^2+3^3+3^4+...+3^{2003}+3^{2004}\)

\(3B=3.\left(3+3^2+3^3+3^4+...+3^{2003}+3^{2004}\right)\)

\(=3^2+3^3+3^4+3^5+...+3^{2004}+3^{2005}\)

\(3B-B=\left(3^2+3^3+3^4+3^5+...+3^{2004}+3^{2005}\right)-\left(3+3^2+3^3+3^4+...+3^{2003}+3^{2004}\right)\)

\(2B=3^{2005}-3\)

\(B=\frac{3^{2005}-3}{2}< 3^{2005}=C\)

\(\Rightarrow B< C\)

5 tháng 7 2018

D = 1+22+23+...+22004

=> 2D = 2+23+24+...+22005

=> 2D-D=22005+2-1

D=22005+1

a: \(\left(-\dfrac{1}{16}\right)^{100}=\left(\dfrac{1}{16}\right)^{100}=\left(-\dfrac{1}{2}\right)^{400}\)

\(\left(-\dfrac{1}{2}\right)^{500}=\left(-\dfrac{1}{2}\right)^{500}\)

mà \(400< 500\)

nên \(\left(-\dfrac{1}{16}\right)^{100}< \left(-\dfrac{1}{2}\right)^{500}\)

4 tháng 10 2015

a, 9^5>27^3

​b,3^200>2^300

​c, 32^11<17^14

25 tháng 9 2017

a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

vi \(8^{100}< 9^{100}\)nen \(2^{300}< 3^{200}\)

25 tháng 9 2017

dễ thế mà ko biết làm

13 tháng 9 2018

4 . 5 mu 2 -3 .2 mu 3

7 × 3 mu x + 20 × 3 mu x = 3 mu 25