Cho a,b,c thoa man a+2b +3c >= 21 cmr
a+b+c +3/a+9/2b+4/c>=13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{3}{a}+\frac{3a}{4}\right)+\left(\frac{9}{2b}+\frac{b}{2}\right)+\left(\frac{4}{c}+\frac{c}{4}\right)+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge2\sqrt{\frac{3}{a}.\frac{3a}{4}}+2\sqrt{\frac{9}{2b}.\frac{b}{2}}+2\sqrt{\frac{4}{c}.\frac{c}{4}}+\frac{1}{4}.20\)
\(=3+3+2+5\)
\(=13\)
Dấu "=" xảy ra khi \(a=2;\text{ }b=3;\text{ }c=4\)
Vậy GTNN của A là 13.
Lời giải:
Biến đổi $A$ :
\(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}=\frac{1}{4}(a+2b+3c)+\left(\frac{3a}{4}+\frac{3}{a}\right)+\left (\frac{b}{2}+\frac{9}{2b}\right)+\left (\frac{c}{4}+\frac{4}{c}\right)\)
Ta có: \(\frac{1}{4}(a+2b+3c)\geq \frac{20}{4}=5\)
Áp dụng BĐT AM-GM: \(\left\{\begin{matrix} \frac{3a}{4}+\frac{3}{a}\geq 3\\ \frac{b}{2}+\frac{9}{2b}\geq 3\\ \frac{c}{4}+\frac{4}{c}\geq 2\end{matrix}\right.\)
Do đó \(A\geq 5+3+3+2=13\) hay \(A_{\min}=13\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} a=2\\ b=3\\ c=4\end{matrix}\right.\)
Mấu chốt của bài toán là cách tìm điểm rơi.
Đề đúng \(3+\frac{a}{2b}+\frac{2b}{3c}+\frac{3c}{a}\ge a+2b+3c+\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}\)
Ta thấy:
\(a\cdot2b\cdot3c=1\) nên ta đặt \(a=\frac{y}{x};2b=\frac{z}{y};3c=\frac{x}{z}\)
Khi đó \(VT\ge VP\Leftrightarrow\frac{3xyz+x^3+y^3+z^3}{xyz}\)
\(\ge\frac{x^2y+y^2x+y^2z+z^2y+x^2z+z^2x}{xyz}\)
\(\Leftrightarrow3xyz+x^3+y^3+z^3-x^2y-y^2x-y^2z-z^2y-z^2x-x^2z\ge0\)
\(\Leftrightarrow x\left(x-y\right)\left(x-z\right)+y\left(y-z\right)\left(y-x\right)+z\left(z-x\right)\left(z-y\right)\ge0\)
Đúng theo Bđt Schur
Vậy Bđt đc chứng minh
\(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(A=\frac{1}{4}\left(a+2b+3c\right)+\left(\frac{3}{4}a+\frac{3}{a}\right)+\left(\frac{1}{2}b+\frac{9}{2b}\right)+\left(\frac{1}{4}c+\frac{4}{c}\right)\)
Áp dụng BĐT AM-GM ta có:
\(A\ge\frac{1}{4}\left(a+2b+3c\right)+2.\sqrt{\frac{3}{4}a.\frac{3}{a}}+2.\sqrt{\frac{1}{2}b.\frac{9}{2b}}+2.\sqrt{\frac{1}{4}c.\frac{4}{c}}\)
\(\ge\frac{1}{4}.20+\frac{2.3}{2}+\frac{2.3}{2}+2=5+3+3+2=13\)
Dấu " = " xảy ra <=> a=2 ; b=3 ; c=4
KL:........................................................
\(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(=\left(\frac{3}{a}+\frac{3a}{4}\right)+\left(\frac{9}{2b}+\frac{b}{2}\right)+\left(\frac{4}{c}+\frac{c}{4}\right)+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge2\sqrt{\frac{3}{a}\cdot\frac{3a}{4}}+2\sqrt{\frac{9}{2b}\cdot\frac{b}{2}}+2\sqrt{\frac{4}{c}\cdot\frac{c}{4}}+\frac{1}{4}\cdot20\)
\(=2\cdot\frac{3}{2}+2\cdot\frac{3}{2}+2\cdot1+5=3+3+2+5=13\)
Vậy min A = 13 khi a = 2; b = 3; c = 4
mk chỉnh lại đề nhé: \(a+2b+3c\ge20\)
\(a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(=\left(\frac{3a}{4}+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{c}{4}+\frac{4}{c}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)
\(\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}\left(a+2b+3c\right)\) (BĐT AM-GM)
\(\ge\)\(3+3+2+\frac{20}{4}=13\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=2,b=3,c=4\)