Cho tam giác ABC vuông tại A,AH vuông góc với BC,biết AB=5cm,AC =12cm.Tính HB,HC,AH,BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)
nên HC=3HB
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB^2=48\)
\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)
Bài 1:
ta có: \(AB=\dfrac{1}{2}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=1\left(cm\right)\)
\(\Leftrightarrow HC=4\left(cm\right)\)
hay BC=5(cm)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
a) Xét ΔAHBvaˋΔAHCΔAHBvàΔAHCcó:
ˆAHB=ˆAHC=AHB^=AHC=^90 độ ( gt )
AH là cạnh chung
AB=AC=5cm ( gt )
Do đó: ΔABH=ΔACHΔABH=ΔACH( cạnh huyền-cạnh góc vuông)
⇒HB=HC⇒HB=HC( 2 cạnh tương ứng )
b) Ta có: HB = HC = 12.BC=12.8=82=412.BC=12.8=82=4 cm
Áp dụng định lí Py-ta-go vào ΔAHBΔAHB vuông tại H, ta có:
BA2=BH2+AH2BA2=BH2+AH2
hay: 52=42+AH2⇒AH2=52<...
Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{48}{10}=\dfrac{24}{5}cm\)
* Áp dụng hệ thức \(AB^2=HB.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}cm\)
\(CH=BC-BH=10-\dfrac{18}{5}=\dfrac{32}{5}cm\)
bài này ko đủ dữ kiện. nếu bổ sung dữ kiện thì ta có thể tính dc với cách tính của định lý pitago.những bài này thường có 3 dữ kiện trở lên
A B C H
Xét \(\Delta ABC\)vuông tại A , ta có :
\(BC^2=AC^2+AB^2\Leftrightarrow BC=\sqrt{AC^2+AB^2}\)
\(\Leftrightarrow BC=\sqrt{5^2+12^2}=13\)(cm)
Xét \(\Delta ABC\)vuông tại A có AH \(\perp\)BC tại H , ta có :
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5^2}{13}=\frac{25}{13}\)(cm)
\(AC^2=HC.BC\Leftrightarrow HC=\frac{AC^2}{BC}=\frac{12^2}{13}=\frac{144}{13}\)(cm)
\(AH^2=HB.HC\Leftrightarrow AH=\sqrt{HB.HC}=\sqrt{\frac{25}{13}.\frac{144}{13}}=\frac{60}{13}\)(cm)
Vậy ...
Nếu bạn muốn đổi ra số thập phân cũng đc nha nhưng mk để phân số cho gọn
........................................................................................Chúc bạn học tốt.................................................................................................