Cho n thuộc Z.CMR: n^6-n^2 chia hết cho 60
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^6-n^2=n^2\left(n^4-1\right)=n^2\left(n^2-1\right)\left(n^2+1\right)=n^2\left(n^2-1\right)\left(n^2-4+5\right)\)
\(=n^2\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n^2\left(n-1\right)\left(n+1\right)\)
\(=n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n^2\left(n-1\right)\left(n+1\right)\)
Vì \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp
=>\(n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\)
Mà n(n-1)(n-2) và n(n+1)(n+2) là tích 3 số nguyên liên tiếp
=>n(n-1)(n-2) chia hết cho 2 và 3 ; n(n+1)(n+2) chia hết cho 2 và 3
=> \(n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) chia hết cho 4 và 3
Do đó \(n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮3.4.5=60\) (1)
- Nếu n lẻ thì n-1,n+1 chẵn hay (n-1)(n+1) chia hết cho 4
=>\(5n^2\left(n-1\right)\left(n+1\right)⋮20\)
Mà \(n\left(n-1\right)\left(n+1\right)⋮3\)
=>\(5n^2\left(n-1\right)\left(n+1\right)⋮60\)
- Nếu n chẵn thì \(n^2⋮4\)
\(\Rightarrow5n^2\left(n-1\right)\left(n+1\right)⋮20\)
Mà \(n\left(n-1\right)\left(n+1\right)⋮3\)
\(\Rightarrow5n^2\left(n-1\right)\left(n+1\right)⋮60\)
Từ 2 trường hợp trên => \(5n^2\left(n-1\right)\left(n+1\right)⋮60\) (2)
Từ (1) và (2) => \(n^2\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n^2\left(n-1\right)\left(n+1\right)⋮60\) hay \(n^6-n^2⋮60\) (đpcm)
\(a.\left(x^3-16x\right)=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-4=0\\x+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=4\\x=-4\end{cases}}}\)
Uầy lười lm waa
. Hãy nhiệt tình lên :>> Chúng ta là công dân cùng một nước,phải giúp đỡ nhau a~~~
câu a A= 3+3^2 + 3^3 + ...+3^60 chia hết cho 3
mày viết như thế này Nhung béo ạ
A=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^58=3^59+3^60)
A=3(1+3=3^2)+3^4(1+3+3^2)+...+3^58(1+3+3^2)
A=13(3+3^4+3^5+...+3^58)chia hết cho 13
câu sau chịu! MAi nhớ đãi kẹo
Câu 1:
(Đk n € Z) Ta có :n^3+11n=n^3-n+12n=n(n^2-1)+12n=(n-1)n(n...
vì n là số nguyên nên (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6;mà 12 lại chia hết cho 6 =>12n cũng chia hết cho 6.
Vậy (n-1)n(n+1)+12n chia hết cho 6 => n^3+11n chia hết cho 6 (đpcm)
Câu 2: Gọi biểu thức trên là a ta có:
A=mn(m²-n²)
= mn(m² - 1 - n² + 1)
= mn [(m-1)(m+1) - (n-1)(n+1)]
= n(m-1)m(m+1) - m(n-1)n(n+1)
{n(m-1)m(m+1) chia hết cho 3 (tính 3 số tự nhiên liên tiếp)
{m(n-1)n(n+1) chia hết cho 3 (tính 3 số tự nhiên liên tiếp)
=> n(m-1)m(m+1) - m(n-1)n(n+1) chia hết cho 3
=> A chia hết cho 3
Câu 3:
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6
Vậy n(n+1)(2n+1) chia hết cho 6
Câu 4: Gọi biểu thức trên là B ta có:
* B=n^2(n^4-1) = n^2(n^2+1)(n^2 - 1)
= n^2(n^2 - 4 + 5)(n^2 - 1) = n^2(n^2 - 1)(n^2 - 4) + n^2(n^2 - 1).5
= (n - 2)(n-1).n^2(n+1)(n+2) + n^2(n^2 - 1).5
(n - 2)(n-1).n^2(n+1)(n+2) chứa tích 5 số liên tiếp chia hết cho 5 và n^2(n^2 - 1).5 cũng chia hết cho 5
=> B chia hết cho 5
*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) là tích 3 số tự nhiên liên tiếp chia hết cho 3
=> B chia hết cho 3
*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) = n^2(n^2+1)(n+1)(n-1)
n chẵn => n^2 chia hết cho 4 => A(n) chia hết cho 4
n lẻ => n +1 và n -1 là 2 số chẵn => (n+1)(n-1) chia hết cho 4 => A(n) chia hết cho 4
=> B chia hết cho 4
Vì: 3,4,5 nguyên tố cùng nhau => Bchia hết cho 3.4.5 = 60
Câu 5: Gọi biểu thức trên là C ta có:
Đặt C = mn(m4-n4) = mn(m2-n2)(m2+n2)=mn(m-n)(m+n)(m2+n2)
*)Nếu 1 trong 2 số m,n chia hết cho 2 suy ra C chia hết cho 2.
Nếu k0 thì m,n lẻ suy ra m-n chia hết cho 2 suy ra C chia hết cho 2.
Vậy C chia hết cho 2
*)Nếu m,n có 1 số chia hết cho 3 => C chia hết cho 3.
Nếu k0: +)m,n đồng dư mod 3 => m-n chia hết cho 3 =>C chia hết cho 3
+)m,n chia 3 dư lần lượt là 1, 2 =>m+n chia hết cho 3 => C chia hết cho 3.
Vậy C chia hết cho 3.
*)Nếu m,n có 1 số chia hết cho 5 => C chia hết cho 5
Nếu k0 +)m,n đồng dư mod 5 =>m-n chia hết cho 5
+)m,n có số dư mod 5 là (1,2), (1,3), (1,4), (2,3), (2,4),(3,4)
Các trường hợp (1,4),(2,3) =>m+n chia hết cho5
Còn lại m2+n2 chai hết cho 5 (do 1 số chính phương chia 5 dư 0,1,4 nên bạn có thể tự thử các trường hợp còn lại)
Vậy C chia hết cho 5.
Từ kết quả trên => C chia hết cho 30( đpcm).
\(n^6-n^2=n^2\left(n^4-1\right)=\left(n^2-1\right)n^2\left(n^2+1\right)\)
\(=\left(n-1\right).n.\left(n+1\right).n.\left(n^2-4\right)+5.n^2\left(n-1\right).\left(n+1\right)\)
\(=n^2\left(n-1\right).\left(n-2\right)\left(n+1\right)\left(n+2\right)+5n^2\left(n-1\right).\left(n+1\right)\)
Vì \(n\left(n-1\right)\left(n+1\right)\left(n+2\right)\left(n-2\right)\) là tích 5 số nguyên liên tiếp nên
\(n^2\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\) chia hết cho 3.4.5=60
Xét \(n\) chẵn thì \(n^2⋮4\) nên \(5n^2\left(n-1\right)\left(n+1\right)⋮20\) mà \(n\left(n+1\right)\left(n-1\right)⋮3\)
\(\Rightarrow5n^2\left(n-1\right)\left(n+1\right)⋮60\)
\(\Rightarrow n^2\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)+5n^2\left(n-1\right)\left(n+1\right)⋮60\) hay \(n^6-n^2⋮60\)
Xét \(n\) lẻ thì \(n-1,n+1\) cùng chẵn hay \(5n^2\left(n-1\right)\left(n+1\right)⋮4\)
\(\Rightarrow5n^2\left(n-1\right)\left(n+1\right)⋮60\) hay \(n^6-n^2⋮60\)
bạn ơi giải thích cho mình chỗ(n^2-1).n^2(n^2+1) taih sao lại bằng(n-1)n(n+1)n(n^2-4)+5n^2.(n-1)(n+1) được ko? Cảm ơn bn nhiều nha