giải hệ PT \(\hept{\begin{cases}x^2+y^2+xy=1\\x^3+y^3=x+y\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐK:y-2x+1\ge0;4x+y+5\ge0;x+2y-2\ge0,x\le1\)
Th1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\-1=\sqrt{10}-1\end{cases}}\)(không thỏa mãn)
Th2: \(x,y\ne1\)
\(2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)
Dễ thấy \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\)nên x + y - 2 = 0
Thay y = 2 - x vào phương trình \(x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)
Vì \(x\le1\)nên\(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra x = -2 nên y = 4
Vậy nghiệm của hệ phương trình là (x;y) = (-2;4)
b) \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x^2+y^2\right)=10\left(1\right)\\x^3+2y^3=10\left(x-y\right)\left(2\right)\end{cases}}\)
Thay (1) vào (2), ta được: \(x^3+2y^3=2\left(x^2+y^2\right)\left(x-y\right)\Leftrightarrow\left(2y-x\right)\left(x^2+2y^2\right)=0\)
* Th1: \(x^2+2y^2=0\)(*)
Mà \(x^2\ge0\forall x;2y^2\ge0\forall y\Rightarrow x^2+2y^2\ge0\)nên (*) xảy ra khi x = y = 0 nhưng cặp nghiệm này không thỏa mãn hệ
* Th2: 2y - x = 0 suy ra x = 2y thay vào (1), ta được: \(y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\)
Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)
\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=6\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=\left(x^2-3y^2\right)\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}24xy^2-2x^2y-2x^3=0\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x\left(3y-x\right)\left(4y+x\right)=0\\x^2-3y^2=6\end{cases}}\)
Đơn giản rồi làm tiếp nhé
\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)
Với x = 0 thì y = 0
Với x \(\ne\)0 thì nhân pt trên cho x ta được
\(\Leftrightarrow\hept{\begin{cases}5x^3-3yx=x^2-3x^2y\left(1\right)\\x^3-x^2=y^2-3y^3\left(2\right)\end{cases}}\)
Lấy (1) + (2) vế theo vế được
\(\Leftrightarrow6x^3-3xy-x^2=x^2+y^2-3x^2y-3y^3\)
\(\Leftrightarrow6x^3-3xy-2x^2-y^2+3x^2y+3y^3=0\)
\(\Leftrightarrow\left(x+y\right)\left(3y^2-3xy-y+6x^2-2x\right)=0\)
Tới đây thì đơn giản roofin làm tiếp nhé
\(\hept{\begin{cases}x^2+xy+y^2=3\left(1\right)\\x^3+3\left(y-x\right)=1\end{cases}}\)
\(\Rightarrow x^3+\left(y-x\right)\left(x^2+xy+y^2\right)=1\)
\(\Leftrightarrow x^3+y^3-x^3=1\)
\(\Leftrightarrow y^3=1\)
\(\Leftrightarrow y=1\)
Thế vô pt (1) được \(x^2+x+1=3\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
\(x^2-y^2+x-y=5\)\(\Leftrightarrow\left(x^2-y^2\right)+\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x-y+1\right)=5\)
\(x^3-x^2y-xy^2+y^3=6\)
\(\Leftrightarrow\left(x^3+y^3\right)-\left(x^2y+xy^2\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-xy\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-2xy+y^2\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2=6\)
c)
x2 - x - 6 = x2 +2x - 3x - 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
d)
x4 + 4 = x4 + 4x2 + 4 - 4x2
= (x2 + 2)2 - (2x)2
= (x2 + 2 - 2x)(x2 + 2 + 2x
\(\hept{\begin{cases}x^2+y^2+xy=1\left(1\right)\\x^3+y^3=x+y\left(2\right)\end{cases}}\)
Ta có: x3 + y3 = x + y
<=> (x + y)(x2 - xy + y2) - (x + y) = 0
<=> (x + y)(x2 - xy + y2 - 1) = 0
<=> x + y = 0 hay x2 - xy + y2 - 1 = 0
* x + y = 0 => x = -y
Thế vào pt (1), ta có 2y2 - y2 = 1 <=> y2 = 1 <=> y = 1 hay y = -1
@ y = 1 => x = -1
@ y = -1 => x = 1
* x2 - xy + y2 - 1 = 0 => x2 - xy + y2 = 1 (3)
Lấy (1) - (3) vế theo vế, ta có: 2xy = 0 <=> x = 0 hay y = 0
@ x = 0 => y2 = 1 <=> y = 1 hay y = -1
@ y = 0 => x2 = 1 <=> x = 1 hay x = -1
Vậy nghiệm (x; y) = (-1, 1) ; (1; -1) ; (0; 1) ; (0; -1) ; (1; 0) ; (-1; 0)