K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2018

Tự vẽ hình

Áp dụng định lí Pytago vào t/g ABC vuông tại A ta có:

AB2+AC2=BC2

=>AC2=BC2-AB2=102-62=64

=>AC=8 (cm)

Lại có: AD=DB (gt), BE=EC (gt)

=>DE là đường trung bình của tam giác ABC

=>\(DE=\frac{AC}{2}=\frac{8}{2}=4\left(cm\right)\)

14 tháng 10 2021

Lần lượt cm được DE,DF,EF là đường trung bình tam giác ABC

\(\Rightarrow DE=\dfrac{1}{2}BC=7\left(cm\right);DF=\dfrac{1}{2}AC=5\left(cm\right);EF=\dfrac{1}{2}AB=3\left(cm\right)\)

23 tháng 6 2021

Hình thì bạn tự vẽ đi nha. Bn không làm đc nhưng cũng phải vẽ hình đc.

Trong ΔABC: DA = DB (GT); EA = EC (GT)

=> DE là đường trung bình

=> DE = 1/2 BC = 1/2 14 = 7 (cm)

Trong ΔABC: DA = DB (GT); FB = FC (GT)

=> DF là đường trung bình

=> DF = 1/2 AC = 1/2 10 = 5 (cm)

Trong ΔABC: EA = EC (GT); FC = FB (GT)

=> EF là đường trung bình

=> EF = 1/2 AB = 1/2 6 = 3 (cm)

Vậy DE = 7cm; DF = 5cm; EF = 3cm.

16 tháng 10 2020

                           A B C D E F

Xét \(\Delta ABC\)có: D là trung điểm của AB, E là trung điểm của AC

\(\Rightarrow\)DE là đường trung bình của \(\Delta ABC\)

\(\Rightarrow DE=\frac{1}{2}.BC=\frac{1}{2}.14=7\left(cm\right)\)

Tương tự ta có:

DF là đường trung bình của \(\Delta ABC\)\(\Rightarrow DF=\frac{1}{2}.AC=\frac{1}{2}.10=5\left(cm\right)\)

EF là đường trung bình của \(\Delta ABC\)\(\Rightarrow EF=\frac{1}{2}.AB=\frac{1}{2}.6=3\left(cm\right)\)

Vậy \(DE=7cm\)\(DF=5cm\)\(EF=3cm\)

8 tháng 9 2017

Vẽ hình và tự trình bày lại bạn nhé.

Theo tính chất của Tam giác vuông ta có:

        BC2 = AB+ AC2

<=> AC2 = BC- AB2 = 10- 62 = 64

<=> AC = \(\sqrt{64}\)= 8 (cm)

Câu 1: 

a: Xét ΔAHB vuông tạiH có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)

\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)