Cho tam giác ABC vuông tại A,AB =6cm ,BC=10cm .Gọi D ,E lần lượt là trung điểm của AB,BC .Tính độ dài DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần lượt cm được DE,DF,EF là đường trung bình tam giác ABC
\(\Rightarrow DE=\dfrac{1}{2}BC=7\left(cm\right);DF=\dfrac{1}{2}AC=5\left(cm\right);EF=\dfrac{1}{2}AB=3\left(cm\right)\)
Hình thì bạn tự vẽ đi nha. Bn không làm đc nhưng cũng phải vẽ hình đc.
Trong ΔABC: DA = DB (GT); EA = EC (GT)
=> DE là đường trung bình
=> DE = 1/2 BC = 1/2 14 = 7 (cm)
Trong ΔABC: DA = DB (GT); FB = FC (GT)
=> DF là đường trung bình
=> DF = 1/2 AC = 1/2 10 = 5 (cm)
Trong ΔABC: EA = EC (GT); FC = FB (GT)
=> EF là đường trung bình
=> EF = 1/2 AB = 1/2 6 = 3 (cm)
Vậy DE = 7cm; DF = 5cm; EF = 3cm.
Xét \(\Delta ABC\)có: D là trung điểm của AB, E là trung điểm của AC
\(\Rightarrow\)DE là đường trung bình của \(\Delta ABC\)
\(\Rightarrow DE=\frac{1}{2}.BC=\frac{1}{2}.14=7\left(cm\right)\)
Tương tự ta có:
DF là đường trung bình của \(\Delta ABC\)\(\Rightarrow DF=\frac{1}{2}.AC=\frac{1}{2}.10=5\left(cm\right)\)
EF là đường trung bình của \(\Delta ABC\)\(\Rightarrow EF=\frac{1}{2}.AB=\frac{1}{2}.6=3\left(cm\right)\)
Vậy \(DE=7cm\), \(DF=5cm\), \(EF=3cm\)
Vẽ hình và tự trình bày lại bạn nhé.
Theo tính chất của Tam giác vuông ta có:
BC2 = AB2 + AC2
<=> AC2 = BC2 - AB2 = 102 - 62 = 64
<=> AC = \(\sqrt{64}\)= 8 (cm)
Câu 1:
a: Xét ΔAHB vuông tạiH có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)
\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)
Tự vẽ hình
Áp dụng định lí Pytago vào t/g ABC vuông tại A ta có:
AB2+AC2=BC2
=>AC2=BC2-AB2=102-62=64
=>AC=8 (cm)
Lại có: AD=DB (gt), BE=EC (gt)
=>DE là đường trung bình của tam giác ABC
=>\(DE=\frac{AC}{2}=\frac{8}{2}=4\left(cm\right)\)