Có A= \(\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\)
Rút gọn và tìm min A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
+) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
a) Ta có :
\(x=4-2\sqrt{3}\)
\(\Leftrightarrow x=3-2\sqrt{3}+1\)
\(\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)( Thỏa mãn ĐKXĐ )
Vậy tại \(x=\left(\sqrt{3}-1\right)^2\)thì giá trị của biểu thức A là :
\(A=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-3}=\frac{\sqrt{3}-1+1}{\sqrt{3}-1-3}=\frac{\sqrt{3}}{\sqrt{3}-4}=\frac{-\sqrt{3}\left(\sqrt{3}+4\right)}{7}\)
b)
\(B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)
\(B=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(B=\frac{-3-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
Ta có :
\(P=A:B\)
\(\Leftrightarrow P=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{-3\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\frac{-\sqrt{x}-3}{3}\)
c) \(P=\frac{-\sqrt{x}-3}{3}\ge0\)
Dấu bằng xảy ra
\(\Leftrightarrow-\sqrt{x}-3=0\)
\(\Leftrightarrow\sqrt{x}=-3\)( vô lí )
Vậy không tìm được giá trị nào của x để P đạt GTNN
\(P=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\\ \)\(=\left(\frac{\sqrt{x}+1}{\sqrt{x}+1}-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right).\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right).\left(\sqrt{x-2}\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{1}{\sqrt{x}+1}:\left(\frac{x-9}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}=\frac{1}{\sqrt{x}+1}:\frac{1}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
b.
\(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\left(\sqrt{x}+1\right)-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)
Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\frac{3}{\sqrt{x}+1}\le3\Rightarrow1-\frac{3}{\sqrt{x}+1}\ge1-3=-2\Rightarrow P\ge-2\)
Dấu "=" xảy ra <=> x=0
vậy Min (P) = -2 <=> x=0
Rút gọn: \(P=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
\(=\left(\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
\(=\frac{1}{\sqrt{x}+1}:\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
\(=\frac{1}{\sqrt{x}+1}:\left(\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{1}{\sqrt{x}+1}.\left(\sqrt{x}-2\right)=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
\(đkxđ\Leftrightarrow x\ge4\)
\(P=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
\(=\frac{\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}}{\sqrt{\frac{4^2}{x^2}-2.\frac{4}{x}+1}}\)
\(=\frac{\sqrt{\left(x-4+2\right)^2}+\sqrt{\left(x-4-2\right)^2}}{\sqrt{\left(\frac{4}{x}-1\right)^2}}\)
\(=\frac{|x-2|+|x-6|}{|\frac{4}{x}-1|}=\frac{x-2+|x-6|}{|\frac{4}{x}-1|}\)
Dùng bảng xét dấu nha
a, đktm:x khác 3 gọi a sao cho x-1=a
\(\Rightarrow A=\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\frac{x-1-2}{\sqrt{a}-\sqrt{2}}=\frac{a-2}{\sqrt{a}-\sqrt{2}}=\frac{\left(\sqrt{a}-\sqrt{2}\right)\left(\sqrt{a}+\sqrt{2}\right)}{\sqrt{a}-\sqrt{2}}\)
\(=\sqrt{a}+\sqrt{2}=\sqrt{x-1}+\sqrt{2}\)
b, \(A=\sqrt{x-1}+\sqrt{2}=\sqrt{4\left(2-3\right)-1}+\sqrt{2}=\sqrt{4\cdot-1-1}+\sqrt{2}=\sqrt{-5}+\sqrt{2}\)
vì \(\sqrt{-5}\)ko có nghĩa \(\Rightarrow\sqrt{-5}+\sqrt{2}\)ko có nghĩa \(\Rightarrow A\)ko có nghĩa khi \(x=4\left(2-3\right)\)
c \(\sqrt{x-1}>=0\Rightarrow\sqrt{x-1}+\sqrt{2}>=\sqrt{2}\)
dấu = xảy ra khi \(x=1\)
\(\Rightarrow\)min A là \(\sqrt{2}\)khi x=1
a = __x - 3___
daee3424_______________________________________________________