vẽ tam giác A phẩy B phẩy C phẩy đối xứng tam giác ABC qua D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chu vi của tam giác ABC là
C=AB+BC+CA=10+24+30=64(cm)
Ta có : tg A'B'C' đồng dạng tg ABC
=>\(\dfrac{CvitgA'B'C'}{CvitgABC}=\dfrac{A'B'}{AB}\left(tisochuvi=tisodongdang\right)\)
=>\(\dfrac{128}{64}=\dfrac{A'B'}{10}\)
=>A'B'=\(\dfrac{128.10}{64}=20\left(cm\right)\)
Chứng minh tương tự B'C'=60cm
A'C'=48cm
A B C A" B" C"
ta có:
\(\dfrac{AB"}{AB}=\dfrac{AC"}{AC}=\dfrac{BC"}{BC}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{AB"+AC"+BC"}{AB+AC+BC}=\dfrac{128}{10+24+30}=\dfrac{128}{64}=2\)
\(AB"=2.10=20\)
\(AC"=2.24=48\)
\(BC"=2.30=60\)
Vậy AB" = 20cm , AC"=48cm, BC"=60cm
Vẽ tia AG là tia đối của tia AC
Ta có: \(\widehat{FAB}=\widehat{ABC}\)(hai góc so le trong, AF//BC)
\(\widehat{GAF}=\widehat{ACB}\)(hai góc đồng vị, AF//BC)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{BAF}=\widehat{GAF}\)
hay Ax là tia phân giác của góc ngoài tại đỉnh A(đpcm)