Tính nhanh
a) \(1+4+7+...+100\)
b) \(2+6+10+...+102\)
c) \(2+2^2+2^3+...+2^{100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... - 99 - 100 + 101 + 102
A=(1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... (97 + 98 - 99 - 100) + 101 + 102
A=(-4) + (-4) +...+ (-4) + 203 ( có 25 số -4)
A=25.(-4)+203
A=-100+203
A=103
B = 1 + (-3) + 5 + (-7) + …+ 17 + (- 19)
B=[1 + (-3)] + [5 +(-7)] +...+ [17 + (-19)] Có 5 cặp số
B=(-2) + (-2) +...+ (-2) có 5 số hạng
B=(-2).5
B=-10
C = 1 - 4 + 7 - 10 + … - 100 + 103
C = (1 - 4) + (7 - 10) + … +(97- 100) + 103 có 34 cặp số
C=(-3) + (-3) +...+ (-3) +103 có 34 số -3
C=34.(-3)+103
C=-102+103
C=1
a) \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{31.34}\)
\(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{31}-\frac{1}{34}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{34}\right)\)
\(A=\frac{2}{3}\cdot\frac{33}{34}=\frac{11}{17}\)
b) \(B=\frac{3}{1}+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{210}\)
\(B=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{420}\) ( 3/1 = 6/2; 6/6=3/3;..)
\(B=\frac{6}{1.2}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{20.21}\)
\(B=6.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\right)\)
\(B=6.\left(1-\frac{1}{21}\right)=6\cdot\frac{20}{21}=\frac{40}{7}\)
A = 1 . 2 + 2 . 3 + 3 . 4 + ... + 99 .100
3 . A = 1. 2 . 3 + 2 . 3 . 3 + 3 . 4 . 3 + ... + 99 . 100 . 3
3 . A = 1 . 2 . 3 + 2 . 3 . ( 4 - 1 ) + 3 . 4 . ( 5 - 2 ) + ... + 99 . 100 . ( 1001 - 998 )
3 . A = 1 . 2 . 3 + 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + ... + 99 . 100 . 1001 - 998 . 99 . 100
3 . A = 99 . ( 100 . 10 )
A = ( 99 . 100 . 10 ) : 3
A = 33000
LẤY A=100:2+1=51(SỐ)
B=(102-2):2+1=51(SỐ)
C=(1005-5):5+1=201(SỐ)
NHỚ **** CAC BẠN
Áp dụng công thức:
Số số hạng = (số cuối - số đầu) : khoảng cách + 1
Tổng = (số cuối + số đầu) x số số hạng : 2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
a) 1 + 4 + 7 + ... + 100
Ta có : 1 + 4 + 7 + ... + 100 ( có 34 số hạng )
= (100 + 1) . 34 : 2 = 1717
b) 2 + 6 + 10 + ... + 102
Ta có : 2 + 6 + 10 + ... + 102 ( có 26 số hạng )
= (102 + 2) . 26 : 2 = 1352
c) 2 + 22 + 23 + ... + 2100
Ta có : S = 2 + 22 + 23 + ... + 2100
2S = 2.(2 + 22 + 23 + ... + 2100)
2S = 22 + 23 + ... + 2100 + 2101
2S - S = (22 + 23 + ... + 2100 + 2101) - (2 + 22 + 23 + ... + 2100)
S = 2101 - 2
a) \(1+4+7+...+100\)
Số số hạng : (100-1) : 3 + 1= 34 (Số)
Tổng : \(\frac{34\left(100+1\right)}{2}=1717\)
b) Số số hạng : (102 - 2 ) : 4 + 1 = 26(Số)
Tổng : \(\frac{26\cdot\left(102+2\right)}{2}=1352\)
c) Đặt \(A=2+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)