K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

Ta có:

\(3\left(x-3\right)\left(x+7\right)-\left(x-3\right)\left(x+5\right)\)

\(=\left(x-3\right)\left[3\left(x+7\right)-\left(x+5\right)\right]\)

\(=\left(x-3\right)\left[3x+7-x-5\right]\)

\(=\left(x-3\right)\left(2x+2\right)\)

3 tháng 7 2018

(x-3)*[3.(x+7)-(x+5)]

3: =4x^2+4x+1-2

=(2x+1)^2-2

\(=\left(2x+1-\sqrt{2}\right)\left(2x+1+\sqrt{2}\right)\)

4: =x^2+xy-5xy-5y^2

=x(x+y)-5y(x+y)

=(x+y)(x-5y)

7 tháng 9 2021

\(3,x\left(x-1\right)-y\left(1-x\right)=\left(x+y\right)\left(x-1\right)\\ 4,x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\\ 5,x^2-2xy+y^2-xz+yz=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y-z\right)\left(x-y\right)\\ 6,x^2-y^2-x+y=\left(x-y\right)\left(x+y\right)-\left(x-y\right)=\left(x-y\right)\left(x+y-1\right)\\ 9,x^3+x^2-xy+xy+y^2+y^3\\ =x^2\left(x+1\right)+y^2\left(x+1\right)=\left(x^2+y^2\right)\left(x+1\right)\\ 10,x^2-6\left(x+3\right)-9\\ =x^2-6x-18-9\\ =x^2-6x-27=\left(x-9\right)\left(x+3\right)\)

10: \(x^2-6\left(x+3\right)-9\)

\(=x^2-6x-18-9\)

\(=x^2-6x-27\)

\(=\left(x-9\right)\left(x+3\right)\)

10 tháng 11 2021

1.\(\left(x-2y\right)^3=x^3-6x^2y+12xy^2-8y^3\)

2.\(8x^3-1=\left(2x-1\right)\left(4x^2+2x+1\right)\)

3. \(x^2-2x-4y^2+1=\left(x-1\right)^2-\left(2y\right)^2=\left(x-2y-1\right)\left(x+2y-1\right)\)

4.C

2 tháng 10 2018

đề bài đúng thì thừa số thứ 4 là x - 2 chứ

13 tháng 11 2016

\(=\left(x^2+8x+15\right)\left(x^2+8x+7\right)+15\)

đặt:\(^{x^2+8x+11=t}\)

ta co \(\left(t+4\right)\left(t-4\right)+15=t^2-16+15=t^2-1\)

\(=\left(t-1\right)\left(t+1\right)\Rightarrow\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)\)

\(\Rightarrow\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

10 tháng 12 2016

\(C=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\) \(\left(1\right)\)

Đặt \(x^2+8x+11=t\) , khi đó

\(\left(1\right)\Leftrightarrow\left(t-4\right)\left(t+4\right)+15\)

\(=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\\ =\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)

10 tháng 12 2016

\(C=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(t=x^2+8x+7\) thì C trở thành:

\(t\left(t+8\right)+15=t^2+8t+15\)

\(t^2+3t+5t+15=t\left(t+3\right)+5\left(t+3\right)\)

\(=\left(t+5\right)\left(t+3\right)=\left(x^2+8x+7+5\right)\left(x^2+8x+7+3\right)\)

\(=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)

26 tháng 8 2021

`b)x^3+y^3+z^3-3xyz`

`=x^3+3xy(x+y)+z^3-3xy(x+y)-3xyz`

`=(x+y)^3+z^3-3xy(x+y+z)`

`=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y)`

`=(x+y+z)(x^2+2xy+y^2-zx-yz-3xy+z^2)`

`=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)`

26 tháng 8 2021

giúp mk vs mk cần gấp T^T

 

1 tháng 11 2020

M = x9 - x7 + x6 - x5 - x4 + x3 - x2 + 1

= ( x9 - x7 ) + ( x6 - x4 ) - ( x5 - x3 ) - ( x2 - 1 )

= x7( x2 - 1 ) + x4( x2 - 1 ) - x3( x2 - 1 ) - ( x2 - 1 )

= ( x2 - 1 )( x7 + x4 - x3 - 1 )

= ( x - 1 )( x + 1 )[ x4( x3 + 1 ) - ( x3 + 1 ) ]

= ( x - 1 )( x + 1 )( x3 + 1 )( x4 - 1 )

= ( x - 1 )( x + 1 )( x + 1 )( x2 - x + 1 )( x2 - 1 )( x2 + 1 )

= ( x + 1 )2( x - 1 )( x2 - x + 1 )( x - 1 )( x + 1 )( x2 + 1 )

= ( x + 1 )3( x - 1 )2( x2 + 1 )( x2 - x + 1 )