K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

a, Xét ∆ ABD và ∆ ACE có:

Góc D = góc E = 90°

AB = AC (∆ ABC cân)

Góc BAC chung

➡️∆ ABD = ∆ ACE (ch-gn)

➡️AD = AE (2 cạnh t/ư)

b,  ✳️C/m AH là tia phân giác của góc BAC

Xét∆ ABC cân tại A có: 

BD vuông góc với AC

CE vuông góc với AB

H là giao điểm của BD và CE 

➡️H là trực tâm ∆ ABC

➡️AH vuông góc với BC

mà ∆ ABC cân tại A

➡️AH là đg cao đồng thời là đg phân giác

➡️AH là p/g góc BAC(đpcm)

 ✳️C/m AH là đg trung trực của ED

Xét ∆ AED cân tại A (AD = AE)

➡️AH là đg phân giác đồng thời là đg trung trực

 ➡️AH là đg trung trực của ED (đpcm)

c, Xét ∆ AEH và ∆ ADH có:

AE = AD (cmt)

Góc BAH = góc CAH (cmt)

AH chung

 ➡️∆ AEH = ∆ ADH (c.g.c)

➡️HE = HD (2 cạnh t/ư)

Xét ∆ CDH vuông tại D

➡️CH > HD

mà HE = HD (cmt)

➡️CH > HE 

Còn câu d để mk nghĩ đã nhé

4 tháng 7 2018

Câu d nè bn.

d, Vì AH là đg trung trực của EF và AH vuông góc với BC

➡️ED // BC (quan hệ từ vuông góc đến song song)

Ta có: góc FED = góc DBC (2 góc có 2 cạnh tương ứng song song)

Gọi AH giao BC tại M

Xét ∆ ABC cân tại A

➡️AH là đg cao đồng thời là trung tuyến

HM là trung tuyến của BC

Xét ∆ IBC có HM là đg cao đồng thời là trung tuyến

➡️∆ IBC cân tại I

 ➡️Góc DBC = góc ECB

Mà góc ECB = góc DEC (2 góc so le trong)

➡️Góc DEC = góc DBC 

mà góc DBC = góc FED (cmt)

➡️Góc FED = góc DEC

➡️ED là tia phân giác góc FEC

Xét ∆ FEC có: CI là phân giác góc DCE (gt)

                         EI là phân giác góc FEC (cmt)

                         CI và EI giao nhau tại I

 ➡️I là tâm đg tròn nội tiếp∆ FEC

➡️FI là phân giác góc CFE

mà góc CFE vuông (EF // BD, góc BDC = 90°)

➡️Góc EFI = góc CFI = 90° ÷ 2 = 45°

Vậy góc EFI = 45°

Hok tốt nhé~

21 tháng 6 2018

a)  Xét \(\Delta\perp ADB\)và \(\Delta\perp AEC\)có :

\(\widehat{A}:chung\)(1)

\(AB=AC\)(vì tam giác ABC  cân )   (2)

\(\widehat{ADB}=\widehat{AEC}=90^o\)(3)

Từ (1) ;(2) và (3)

\(\Rightarrow\Delta\perp ADB=\Delta\perp AEC\)( cạnh huyền - góc nhọn )

\(\Rightarrow AD=AE\)( cặp cạnh tương ứng )

b)  +) 

Xét \(\Delta\perp AEH\)và \(\Delta\perp ADH\)có :

\(AE=AD\) ( chứng minh ở câu a ) (1)

\(\widehat{AEH}=\widehat{ADH}=90^o\)(2)

\(AH:\)Cạnh chung              (3)

Từ (1) (2)và (3)

\(\Rightarrow\Delta\perp AEH=\Delta\perp ADH\)( c-g-c)

\(\Rightarrow\widehat{EAH}=\widehat{DAH}\)( cặp góc tương ứng )

=> AH là đường phân giác của góc BAC         ( đpcm )

+)

Vì \(AE=AD\)( chứng minh ở câu a )

\(\Rightarrow\Delta EAD\)Cân (1)

Mà AH là phân giác của góc BAC ( chứng minh trên ) (2)

Từ (1) và (2)  =>  AH là đường trung trực của ED ( đpcm )

( vì trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường trung trực -- Áp dụng định lí này nha )

c)   Vì \(AB=AC\)( do tam giác ABC cân )       (1)

           \(AE=AD\)( chứng minh ở câu a )          (2)

Từ (1) và (2)             [ Cộng vế với vế ]

\(\Rightarrow BE=CD\)

Xét \(\Delta\perp BEH\)và \(\Delta\perp HDC\)có :

\(\widehat{BEH}=\widehat{CDH}=90^o\)(1)

\(BE=CD\)( chứng minh trên )      (2)

\(\widehat{EHB}=\widehat{HDC}\)( đối đỉnh )       (3)

Từ (1);(2) và (3)

\(\Rightarrow\Delta\perp BEH=\Delta\perp HCD\)(g.c.g)

\(\Rightarrow BE=HC\)( 2 cạnh tương ứng )

14 tháng 3 2016

A E C B H D

hình vẽ đâu rùi còn về phần giao điểm thì mk ko hiểu là cụ thể ở chỗ nào nên chưa giải đc câu c

giải tạm a và b nhé

14 tháng 3 2016

a) gọi giao của AB và DH là P; giao của AC và HE là M

xét 2 tam giác ADP và AHP có:

PD=PH(gt)

AB(chung)

APD=APH=90(độ)

suy ra tam giác ADP=AHP(c.g.c) suy ra AD=AH(1)

CM tương tự ta có: tam giác AKH =AKE(c.g.c) suy ra AH=AE(2)

từ (1)(2) suy ra : Ah=AE

AD=AH

suy ra AD=AE suy ra tam giác DAE cân tại A

29 tháng 5 2022

`a)`

Xét △ABH và △EBC có:

BH cạnh chung

\(\widehat{BAH}=\widehat{BEH}\)

\(\widehat{ABH}=\widehat{EBH}\)

`=> △ABH = △EBC`

`b)`

Ta có:

`△ABH = △EBC`

`=> AB = BE`

=> △ABE cân tại B
Xét `△ABE` cân tại B có:

`BH` là đường phân giác

=> `BH` là đường trung trực

`c)`

`Δ ABH = Δ EBC`

=> `AH = HE` (2 cạnh tương ứng) (1)
Xét tam giác HEC vuông tại E
=> `HC > HE` ( vì HC là cạnh huyền)(2)

MÀ `AH = HE`

nên `HA < HC`

`d)` có bị sai đề không vậy bạn

 

 

29 tháng 5 2022

Sửa đề

d) chứng minh BH vuông góc với IC 

Bài làm:

Xét `△ABE` cân tại `B` có:

`BH` là đường phân giác

`=> BH` là đường cao

`=> BH⊥ IC`

 

 

 

a: Xét ΔABC có

BD,CE là đường cao

BD cắt CE tại H

=>H là trực tâm

=>AH vuông góc BC

b: ΔABC cân tại A

mà AH là đường cao

nên AH là phân giác của góc BAC

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

góc EAH=góc DAH

=>ΔAEH=ΔADH

=>AE=AD và HE=HD

=>AH là trung trực của DE

15 tháng 6 2020

tự kẻ hình

a) xét tam giác BEC và tam giác CDB có

BC chung

BEC=CDB(=90 độ)

ABC=ACB( tam giác ABC cân A)

=> tam giác BEC= tam giác CDB(ch-gnh)

=> BD=CE( hai cạnh tương ứng)

b) từ tam giác BEC= tam giác CDB=> DBC=ECB(hai góc tương ứng)

=> tam giác HBC cân H

c) đặt O là giao điểm của AH với BC

vì AH,BD,CE cùng giao nhau tại H mà BD, CE là đường cao=> AH là đường cao ( 3 đường cao cùng đi qua một điểm)

vì HBC cân H=> HB=HC

xét tam giác HOB và tam giác HOC có

HB=HC(cmt)

HBO=HCO(cmt)

HOB=HOC(=90 độ)

=> tam giác HOB= tam giác HOC(ch-gnh)

=> BO=CO( hai cạnh tương ứng)

=> AH là trung trực của BC

d) xét tam giác CDB và tam giác CDK có

BD=DK(gt)

CDB=CDK(=90 độ)

DC chung

=> tam giác CDB= tam giác CDK(cgc)

=> CBD=CKD( hai cạnh tương ứng)

mà CBD=BCE=> CKD=BCE 

17 tháng 1 2022

hay quá

23 tháng 4 2017

A) Xét tam giác BEC và tam giác CDB có :

            \(\widehat{BEC}\)=\(\widehat{CDB}\)=\(90^0\)

          \(BC\)chung

          \(\widehat{EBC}\)=\(\widehat{DCB}\)( giả thiết )

       \(\Rightarrow\Delta EBC=\Delta DCB\left(G-C-G\right)\)

       Vậy \(BD=CE\)   ( hai canh tương ứng )

B) Xét tam giác DHC và tam giác EHC có :

         \(\widehat{EBH}\)  =\(\widehat{DCH}\)( vì góc CDH=góc BEB ; góc EHB = góc DHC )

          EB=DC ( theo phần a )

         \(\widehat{HEB}\)=\(\widehat{CDH}\)=900

            \(\Rightarrow\)\(\Delta EHB=\Delta DHC\left(G-C-G\right)\)

       \(\Rightarrow BB=HC\)( HAI CẠNH TƯƠNG ỨNG )

\(\Rightarrow\Delta BHC\)cân ( định lí tam giác cân )

         C) Ta có : AB =AC ( giả thiêt )

     Vậy góc A cách đều hai mút B và C 

       Vậy AH là đường trung trực của BC

   d)Xét tam giác BDC và tam giác KDC có : 

 DK=DB ( GT )

     CD ( chung )

     suy ra tam giác BDC =tam giác KDC ( cạnh huyền - cạnh góc vuông )

    \(\Rightarrow\) \(\widehat{BCD}\)=\(\widehat{KCD}\)( HAI GÓC TƯƠNG ỨNG ) 

   Mà ta lai có góc EBC = góc BCD  theo giả thiết )

         \(\Rightarrow\)\(\widehat{EBC}\)=\(\widehat{EBC}\)

  chúc bạn hok giỏi 

17 tháng 6 2022

ủa bạn hình như câu d 2 Tgiac=nhau theo TH 2cgv mà bạn