Các bạn chỉ mình trong toán đqij số khi nào thì mới được nhân chéo và khi nào mới được quy đồng ghi rõ từng cái và ví dụ nhá
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+1 còn tùy vào từng loại cần tìm nếu đơn giản là đa thức bậc 2 thì sử dụng máy tính hoặc cứ tìm thôi ;-;
+2 Vì \(m^2+3\ge3\) thì để dấu = xảy ra tức là : \(m^2+3=3\) \(\Leftrightarrow m^2=0\)
<=> m = 0 .
Khi thay số âm vào mũ chẵn (2;4;6...) thì luôn luôn phải đóng mở ngoặc, nếu ko sẽ dẫn tới kết quả sai ngay lập tức:
Ví dụ: \(x^2-1\) với \(x=-2\)
Nếu đóng mở ngoặc: \(\left(-2\right)^2-1=3\) (đúng)
Không đóng mở ngoặc: \(-2^2-1=-5\) (sai)
Trong trường hợp mũ lẻ (mũ 1; 3; 5...) có thể không cần ngoặc nếu thấy đủ tự tin về khả năng toán của bản thân.
Chưa đúng đâu.
Ví dụ: \(\dfrac{1}{\sqrt[3]{x}-\sqrt[3]{y}}=\dfrac{\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{xy}}{x-y}\)
Tham khảo:
Trong toán học, đặc biệt là lý thuyết nhóm, các phần tử của một nhóm có thể được phân hoạch thành các lớp liên hợp; các phần tử của cùng một lớp liên hợp có nhiều tính chất chung, và việc nghiên cứu các lớp liên hợp của các nhóm không giao hoán cho ta biết nhiều đặc điểm quan trọng về cấu trúc của nhóm.[1][2] Trong mọi nhóm giao hoán, mọi lớp liên hợp đều là các tập chỉ chứa một phần tử.
Các hàm số nhận cùng một giá trị với các phần tử thuộc cùng một lớp liên hợp được gọi là các hàm lớp.
a)Trong toán học, đặc biệt là lý thuyết nhóm, các phần tử của một nhóm có thể được phân hoạch thành các lớp liên hợp; các phần tử của cùng một lớp liên hợp có nhiều tính chất chung, và việc nghiên cứu các lớp liên hợp của các nhóm không giao hoán cho ta biết nhiều đặc điểm quan trọng về cấu trúc của nhóm.
Ví dụ:
Xét một \(p-nhóm\) hữu hạn \(G\). Ta sẽ chứng minh rằng: mọi \(p-nhóm\) hữu hạn luôn có tâm không tầm thường.
Vì cấp của mọi lớp liên hợp của \(G\) phải chia hết cấp của \(G\) .Ta suy ra rằng mọi lớp liên hợp \(H_i\) có cấp \(p^{k_i}\) , với \(0< k_i< n\). Từ phương trình lớp ta suy ra:
Từ đây ta suy ra \(p\) là ước của \(|Z\left(G\right)|\), hay \(|Z\left(G\right)|\)\(>1\)
Tham khảo:
Trong toán học, đặc biệt là lý thuyết nhóm, các phần tử của một nhóm có thể được phân hoạch thành các lớp liên hợp; các phần tử của cùng một lớp liên hợp có nhiều tính chất chung, và việc nghiên cứu các lớp liên hợp của các nhóm không giao hoán cho ta biết nhiều đặc điểm quan trọng về cấu trúc của nhóm.
Ví dụ:
Xét một p−nhómp−nhóm hữu hạn GG. Ta sẽ chứng minh rằng: mọi p−nhómp−nhóm hữu hạn luôn có tâm không tầm thường.
Vì cấp của mọi lớp liên hợp của GG phải chia hết cấp của GG .Ta suy ra rằng mọi lớp liên hợp HiHi có cấp pkipki , với 0<ki<n0<ki<n. Từ phương trình lớp ta suy ra:
Từ đây ta suy ra pp là ước của |Z(G)||Z(G)|, hay |Z(G)||Z(G)|>1
cái này mình không rõ nhưng cô mình bảo nên quy đồng bn nhé, chắc bởi trong chương trình thcs k có khái niệm nhân chéo
g