CMR
a, Với mọi m, n thuộc N ta luôn có m.n(m2 - n2)\(⋮\)3
b, (n+20052006).(n+20062005)\(⋮\)2 với mọi n thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
=mn(m-n)(m+n)
Nếu 1 trg 2 số chia hết cho 3=> đpcm
Nếu cả 2 số cùng dư =>m-n chia hết cho 3 (đpcm)
Nếu cả 2 số khác dư (khác dư 0)=> m+n chia hết cho 3(đpcm)
Vậy mn(m^2-n^2) chia hết cho 3
b) Có 2005^2006 lẻ; 2006^2005 chẵn
Nếu n lẻ=> n+2005^2006 chẵn
Nếu n chẵn => n+2006^2005 chẵn
=> đều chia hết cho 2
=> đpcm.
đề sai bn nhé
Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1
Đơn giản thôi:
Xét n=3k=> n^2=9k^2 chia hết cho 3
Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1
Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1
Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.
b) Có mn(m^2-n^2)
=mn(m-n)(m+n)
Nếu m hoặc n chia hết cho 3 thì xong luôn
Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3
Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3
Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3
Ta có
mn(m^2 - n^2)
= mn[ (m^2 - 1) - (n^2 - 1) ]
= m(m^2 - 1)n - mn(n^2 - 1)
= (m - 1)m(m + 1)n - m(n - 1)n(n + 1)
Vì (m - 1)m(m + 1) là tích của 3 số nguyên liên tiếp nên nó chia hết cho 2 và 3.
Mà (2 , 3) = 1 => (m - 1)m(m + 1) chia hết cho 6
=> (m - 1)m(m + 1)n chia hết cho 6.
Chứng minh tương tự ta được m(n - 1)n(n + 1) chia hết cho 6 => (m - 1)m(m + 1)n - m(n - 1)n(n + 1) chia hết cho 6
Do đó m.n(m2 - n2 ) chia hết cho 6
Ta có:
\(VP=\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}\)
\(=\frac{n-n+1}{n\left(n+1\right)}=\frac{0+1}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}=VT\)
Vậy \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) (Đpcm)
a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp
=> m(m+1)(m-1) chia hết cho 3 và 2
Mà (3,2) = 1
=> m(m+1)(m-1) chia hết cho 6
=> m^3 - m chia hết cho 6 V m thuộc Z
b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8
=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z
Tick nha pham thuy trang
a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6
mk chỉ biết có thế thôi