K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

a: \(A=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

căn x+1>=1

=>2/căn x+1<=2

=>-2/căn x+1>=-2

=>A>=-2+1=-1

Dấu = xảy ra khi x=0

b: loading...

15 tháng 3 2022

Đặt A=\(\dfrac{\sqrt{x}-1}{x+\sqrt{x}+2}\)\(\Rightarrow Ax+A\sqrt{x}+2A-\sqrt{x}+1=0\)

\(\Leftrightarrow Ax+\sqrt{x}\left(A-1\right)+2A+1=0\)

\(\Delta=\left(A-1\right)^2-4A\left(2A+1\right)=A^2-2A+1-8A^2-4A\)\(=-7A^2-6A+1\ge0\)

\(\Rightarrow-1\le A\le\dfrac{1}{7}\)

Vậy Max A là \(\dfrac{1}{7}\)

Dâu"=" xảy ra \(\Leftrightarrow A=\dfrac{1}{7}\)

\(\Leftrightarrow7\sqrt{x}-7=x+\sqrt{x}+2\)

\(\Leftrightarrow x-6\sqrt{x}+9=0\)

\(\Leftrightarrow\left(\sqrt{x}-3\right)^2=0\Leftrightarrow x=9\)

3 tháng 2 2021

Xét \(2A=2\sqrt{x-2}+4\sqrt{x+1}+4038-2x\)     (Đk:\(x\ge2\))

     \(2A=-\left[\left(x-2\right)-2\sqrt{x-2}+1\right]-\left[\left(x+1\right)-4\sqrt{x+1}+2\right]+4042\)

   \(2A=-\left(\sqrt{x-2}-1\right)^2-\left(\sqrt{x+1}-2\right)^2+4042\le4042\)

\(\Leftrightarrow A\le2021\)

\(\Rightarrow Amax=2021\) khi x=3   (tm)Tự đăng câu hỏi xong tự trả lời (T-T)         

AH
Akai Haruma
Giáo viên
22 tháng 6 2023

Lời giải:

$\frac{3}{2}B=\frac{3\sqrt{x}}{x+\sqrt{x}+1}$
$\Rightarrow 1-\frac{3}{2}B=1-\frac{3\sqrt{x}}{x+\sqrt{x}+1}=\frac{x-2\sqrt{x}+1}{x+\sqrt{x}+1}=\frac{(\sqrt{x}-1)^2}{x+\sqrt{x}+1}\geq 0$ với mọi $x\geq 0$

$\Rightarrow \frac{3}{2}B\leq 1$

$\Rightarrow B\leq \frac{2}{3}$

Vậy $B_{\max}=\frac{2}{3}$ khi $\sqrt{x}-1=0\Leftrightarrow x=1$

5 tháng 3 2022

em tham khảo

undefined

NV
16 tháng 7 2021

24.

\(cos\left(x-\dfrac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)

\(y_{max}=4\)

26.

\(y=\sqrt{2}cos\left(2x-\dfrac{\pi}{4}\right)\)

Do \(cos\left(2x-\dfrac{\pi}{4}\right)\le1\Rightarrow y\le\sqrt{2}\)

\(y_{max}=\sqrt{2}\)

b.

\(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)