M= 1/3+1/9+1/27+1/81+............+1/6561
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3M=1+1/3+1/9+...+1/2187
2M=3M-M
2M=1-1/6561
2M=6560/6561
M=3280/6561
Cho \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\)
\(\frac{1}{3}A=\frac{1}{3}\times\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\right)\)
\(\frac{1}{3}A=\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{19683}\)
\(A-\frac{1}{3}A=\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{6561}\right)-\left(\frac{1}{9}+\frac{1}{27}+...+\frac{1}{19683}\right)\)
\(\frac{2}{3}A=\frac{1}{3}-\frac{1}{19683}\)
\(A=\frac{4840}{9683}:\frac{2}{3}=\frac{7260}{9683}\)
ta có :
= ( 1 + 59049 ) + ( 3 + 2187 ) + ( 9 + 6561 ) + ( 27 + 243 ) + ( 81 + 729 )
= 59050 + 2190 + 6570 + 270 + 810
= 59050 + ( 2190 + 810 ) + 6570 + 270
= 59050 + 3000 + 6570 + 270
= 59050 + ( 3000 + 6570 ) + 270
= 59050 + 9570 + 270
= 68620 + 270
= 68890
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{6561}\)
\(\Rightarrow A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^8}\)
\(\Rightarrow3A=3.\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)\) \(=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(\Rightarrow3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^8}\)
\(\Rightarrow2A=1-\frac{1}{3^8}\) \(\Rightarrow A=\frac{1-\frac{1}{3^8}}{2}\)
k cho mik đi mn!Nguyễn Như Quỳnh!
\(3A=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{2187}\)
\(3A-A=\left(1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{2187}\right)-\left(\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{6561}\right)\)
\(2A=\dfrac{6560}{6561}\)
\(A=\dfrac{3280}{6561}\)
\(A=\dfrac{3}{5.6}+\dfrac{3}{6.7}+...+\dfrac{3}{91.92}\)
\(\Rightarrow A=3\left(\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{91.92}\right)\)
\(\Rightarrow A=3\left(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{91}-\dfrac{1}{92}\right)\)
\(\Rightarrow A=3\left(\dfrac{1}{5}-\dfrac{1}{92}\right)\)
\(\Rightarrow A=3.\dfrac{87}{460}=\dfrac{261}{460}\)
Sửa đề: A=1/3+1/9+1/27+...+1/6561
=1/3+1/3^2+1/3^3+...+1/3^8
=>3A=1+1/3+...+1/3^7
=>3A-A=1-1/3^8
=>\(2A=\dfrac{3^8-1}{3^8}\)
=>\(A=\dfrac{3^8-1}{2\cdot3^8}\)
Đặt \(S=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{6561}\)
\(3S=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{2187}\)
\(2S=\dfrac{2188}{2187}-\left(\dfrac{1}{27}+\dfrac{1}{6561}\right)\)
\(2S=\dfrac{2188}{2187}-\dfrac{244}{6561}\)
\(2S=\dfrac{4376}{6561}-\dfrac{244}{6561}\)
\(2S=\dfrac{4132}{6561}\)
\(S=\dfrac{2066}{6561}\)
M = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\)
=> 3M = \(1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{2187}\)
=> 3M - M = ( \(1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{2187}\) ) - ( \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\))
2M = 1 - \(\frac{1}{6561}\)
2M = \(\frac{6560}{6561}\)
=> M = \(\frac{3280}{6561}\)
\(M=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+.......+\frac{1}{6561}\)
\(\Rightarrow M=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.........+\frac{1}{3^8}\)
\(\Rightarrow3M=3\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.........+\frac{1}{3^8}\right)\)
\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+............+\frac{1}{3^7}\)
\(\Rightarrow3M-M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+..........+\frac{1}{3^7}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-.......-\frac{1}{3^8}\)
\(\Rightarrow2M=1-\frac{1}{3^8}\)
\(\Rightarrow M=\frac{1-\frac{1}{3^8}}{2}\)
Vậy M = \(\frac{1-\frac{1}{3^8}}{2}\)